OBJECTIVE The extent of resection is the most important prognostic factor following brain glioma surgery. However, eloquent areas within tumors limit the extent of resection and, thus, critically affect outcomes. The authors hypothesized that presurgical suppression of the eloquent areas within a tumor by continuous cortical electrical stimulation, coupled with appropriate behavioral training ("prehabilitation"), would induce plastic reorganization and enable a more extensive resection. METHODS The authors report on 5 patients harboring gliomas involving eloquent brain areas within tumors as identified on intraoperative stimulation mapping. A grid of electrodes was placed over the residual tumor, and continuous cortical electrical stimulation was targeted to the functional areas. The stimulation intensity was adjusted daily to provoke a mild functional impairment while the function was intensively trained. RESULTS The stimulation intensity required to impair function increased progressively in all patients, and all underwent another operation a mean of 33.6 days later (range 27-37 days), when the maximal stimulation voltage in all active contacts induced no functional deficit. In all cases, a substantially more extensive resection of the tumor was possible. Intraoperative mapping and functional MRI demonstrated a plastic reorganization, and most previously demonstrated eloquent areas within the tumor were silent, while there was new functional activation of brain areas in the same region or toward the contralateral hemisphere. CONCLUSIONS Prehabilitation with continuous cortical electrical stimulation and appropriate behavioral training prior to surgery in patients with WHO Grade II and III gliomas affecting eloquent areas accelerate plastic changes. This can help maximize tumor resection and, thus, improve survival while maintaining function.
Traumatic brain injury (TBI) has a complex pathology in which the initial injury releases damage associated proteins that exacerbate the neuroinflammatory response during the chronic secondary injury period. One of the major pathological players in the inflammatory response after TBI is the inflammasome. Increased levels of inflammasome proteins during the acute phase after TBI are associated with worse functional outcomes. Previous studies reveal that the level of inflammasome proteins in biological fluids may be used as promising new biomarkers for the determination of TBI functional outcomes. In this study, we provide further evidence that inflammatory cytokines and inflammasome proteins in serum may be used to determine injury severity and predict pathological outcomes. In this study, we analyzed blood serum from TBI patients and respective controls utilizing Simple Plex inflammasome and V-PLEX inflammatory cytokine assays. We performed statistical analyses to determine which proteins were significantly elevated in TBI individuals. The receiver operating characteristics (ROC) were determined to obtain the area under the curve (AUC) to establish the potential fit as a biomarker. Potential biomarkers were then compared to documented patient Glasgow coma scale scores via a correlation matrix and a multivariate linear regression to determine how respective biomarkers are related to the injury severity and pathological outcome. Inflammasome proteins and inflammatory cytokines were elevated after TBI, and the apoptosis-associated speck like protein containing a caspase recruitment domain (ASC), interleukin (IL)-18, tumor necrosis factor (TNF)-α, IL-4 and IL-6 were the most reliable biomarkers. Additionally, levels of these proteins were correlated with known clinical indicators of pathological outcome, such as the Glasgow coma scale (GCS). Our results show that inflammatory cytokines and inflammasome proteins are promising biomarkers for determining pathological outcomes after TBI. Additionally, levels of biomarkers could potentially be utilized to determine a patient’s injury severity and subsequent pathological outcome. These findings show that inflammation-associated proteins in the blood are reliable biomarkers of injury severity that can also be used to assess the functional outcomes of TBI patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.