Text removal algorithms have been proposed for unilingual scripts with regular shapes and layouts. However, to the best of our knowledge, a generic text removal method which is able to remove all or user-specified text regions regardless of font, script, language or shape is not available. Developing such a generic text eraser for real scenes is a challenging task, since it inherits all the challenges of multi-lingual and curved text detection and inpainting. To fill this gap, we propose a mask-based text removal network (MTRNet). MTRNet is a conditional adversarial generative network (cGAN) with an auxiliary mask. The introduced auxiliary mask not only makes the cGAN a generic text eraser, but also enables stable training and early convergence on a challenging large-scale synthetic dataset, initially proposed for text detection in real scenes. What's more, MTRNet achieves state-of-the-art results on several real-world datasets including ICDAR 2013, ICDAR 2017 MLT, and CTW1500, without being explicitly trained on this data, outperforming previous state-of-the-art methods trained directly on these datasets.
The demand for large-scale trademark retrieval (TR) systems has significantly increased to combat the rise in international trademark infringement. Unfortunately, the ranking accuracy of current approaches using either handcrafted or pre-trained deep convolution neural network (DCNN) features is inadequate for large-scale deployments. We show in this paper that the ranking accuracy of TR systems can be significantly improved by incorporating hard and soft attention mechanisms, which direct attention to critical information such as figurative elements and reduce attention given to distracting and uninformative elements such as text and background. Our proposed approach achieves state-of-the-art results on a challenging large-scale trademark dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.