Phototoxicity of visible light laser on the porphyrin-producing bacteria, Porphyromonas gingivalis, in the absence of photosensitizers and under aerobic conditions was shown in previous studies. Recently, we found that the noncoherent visible light sources at wavelengths of 400-500 nm, commonly used in restorative dentistry, induced a phototoxic effect on P. gingivalis, as well as on Fusobacterium nucleatum, and to a lesser extent on the Streptococci sp. To elucidate the mechanism of this phototoxic effect, P. gingivalis and F. nucleatum were exposed to light (1) under aerobic and anaerobic environments and (2) in the presence of scavengers of reactive oxygen species (ROS). Phototoxic effect was not observed when the bacteria were exposed to light under anaerobic conditions. Dimethyl thiourea, a hydroxyl radical scavenger, was effective in reducing phototoxicity (P = 0.05). Other scavengers, such as catalase, superoxide dismutase and ascorbic acid, were less effective when applied separately. These results support the assumption that the phototoxic effect of blue light on the periopathogenic bacteria is oxygen dependent and that hydroxyl radicals play an important role in this process.
An antibacterial synergic effect between blue light and H2O2 was observed. The mechanism of the phototoxic effect on S. mutans was basically a photochemical process, in which ROS were involved. Application of such light in combination with H2O2 to an infected tooth could be an alternative to or serve as an additional minimally invasive antibacterial treatment.
The antibacterial effect of visible light irradiation combined with photosensitizers has been reported. The objective of this was to test the effect of visible light irradiation without photosensitizers on the viability of oral microorganisms. Strains of Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Streptococcus faecalis in suspension or grown on agar were exposed to visible light at wavelengths of 400-500 nm. These wavelengths are used to photopolymerize composite resins widely used for dental restoration. Three photocuring light sources, quartz-tungsten-halogen lamp, light-emitting diode and plasma-arc, at power densities between 260 and 1300 mW/cm2 were used for up to 3 min. Bacterial samples were also exposed to a near-infrared diode laser (wavelength, 830 nm), using identical irradiation parameters for comparison. The results show that blue light sources exert a phototoxic effect on P. gingivalis and F. nucleatum. The minimal inhibitory dose for P. gingivalis and F. nucleatum was 16-62 J/cm2, a value significantly lower than that for S. mutans and S. faecalis (159-212 J/cm2). Near-infrared diode laser irradiation did not affect any of the bacteria tested. Our results suggest that visible light sources without exogenous photosensitizers have a phototoxic effect mainly on Gram-negative periodontal pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.