Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in der dort genannten Lizenz gewährten Nutzungsrechte. October 26, 2010 Terms of use: Documents inThe supply of affordable crop insurance is hampered by the existence of systemic weather risk which results in large risk premiums. In this article, we assess the systemic nature of weather risk for 17 agricultural production regions in China and explore the possibility of spatial diversification of this risk. We simulate the buffer load of hypothetical temperature-based insurance and investigate the relation between the size of the buffer load and the size of the trading area of the insurance. The analysis makes use of a hierarchical Archimedean copula approach (HAC) which allows flexible modeling of the joint loss distribution and reveals the dependence structure of losses in different insured regions. Our results show a significant decrease of the required risk loading when the insured area expands. Nevertheless, a considerable part of undiversifiable risk remains with the insurer. We find that the spatial diversification effect depends on the type of the weather index and the strike level of the insurance. Our findings are relevant for insurers and insurance regulators as they shed light on the viability of private crop insurance in China.
This paper presents the R package HAC, which provides user friendly methods for dealing with hierarchical Archimedean copulae (HAC). Computationally efficient estimation procedures allow to recover the structure and the parameters of HAC from data. In addition, arbitrary HAC can be constructed to sample random vectors and to compute the values of the corresponding cumulative distribution plus density functions. Accurate graphics of the HAC structure can be produced by the plot method implemented for these objects.
This paper concerns goodness-of-fit test for semiparametric copula models. Our contribution is two-fold:we first propose a new test constructed via the comparison between "in-sample" and "out-of-sample" pseudolikelihoods, which avoids the use of any probability integral transformations. Under the null hypothesis that the copula model is correctly specified, we show that the proposed test statistic converges in probability to a constant equal to the dimension of the parameter space and establish the asymptotic normality for the test. Second, we introduce a hybrid mechanism to combine several test statistics, so that the resulting test will make a desirable test power among the involved tests. This hybrid method is particularly appealing when there exists no single dominant optimal test. We conduct comprehensive simulation experiments to compare the proposed new test and hybrid approach with the best "blank test" shown in Genest et al. JEL classification: C12; C22; C32; C52; G15.KEY WORDS: hybrid test; in-and-out-of sample
In this paper we analyse the properties of hierarchical Archimedean copulas. This class is a generalisation of the Archimedean copulas and allows for general non-exchangeable dependency structures. We show that the structure of the copula can be uniquely recovered from all bivariate margins. We derive the distribution of the copula value, which is particularly useful for tests and constructing confidence intervals. Furthermore, we analyse dependence orderings, multivariate dependence measures and extreme value copulas. Special attention we pay to the tail dependencies and derive several tail dependence indices for general hierarchical Archimedean copulas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.