In this paper, we develop a powerful test for identifying SNP-sets that are predictive of survival with data from genome-wide association studies (GWAS). We first group typed SNPs into SNP-sets based on genomic features and then apply a score test to assess the overall effect of each SNP-set on the survival outcome through a kernel machine Cox regression framework. This approach uses genetic information from all SNPs in the SNP-set simultaneously and accounts for linkage disequilibrium (LD), leading to a powerful test with reduced degrees of freedom when the typed SNPs are in LD with each other. This type of test also has the advantage of capturing the potentially non-linear effects of the SNPs, SNP-SNP interactions (epistasis), and the joint effects of multiple causal variants. By simulating SNP data based on the LD structure of real genes from the HapMap project, we demonstrate that our proposed test is more powerful than the standard single SNP minimum p-value based test for association studies with censored survival outcomes. We illustrate the proposed test with a real data application.
This paper concerns goodness-of-fit test for semiparametric copula models. Our contribution is two-fold:we first propose a new test constructed via the comparison between "in-sample" and "out-of-sample" pseudolikelihoods, which avoids the use of any probability integral transformations. Under the null hypothesis that the copula model is correctly specified, we show that the proposed test statistic converges in probability to a constant equal to the dimension of the parameter space and establish the asymptotic normality for the test. Second, we introduce a hybrid mechanism to combine several test statistics, so that the resulting test will make a desirable test power among the involved tests. This hybrid method is particularly appealing when there exists no single dominant optimal test. We conduct comprehensive simulation experiments to compare the proposed new test and hybrid approach with the best "blank test" shown in Genest et al. JEL classification: C12; C22; C32; C52; G15.KEY WORDS: hybrid test; in-and-out-of sample
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.