We present OpenGlue: a free open-source framework for image matching, that uses a Graph Neural Networkbased matcher inspired by SuperGlue [40]. We show that including additional geometrical information, such as local feature scale, orientation, and affine geometry, when available (e.g. for SIFT features), significantly improves the performance of the OpenGlue matcher. We study the influence of the various attention mechanisms on accuracy and speed. We also present a simple architectural improvement by combining local descriptors with context-aware descriptors. The code and pretrained OpenGlue models for the different local features are publicly available 1 .
Learning from imperfect data becomes an issue in many industrial applications after the research community has made profound progress in supervised learning from perfectly annotated datasets. The purpose of the Learning from Imperfect Data (LID) workshop is to inspire and facilitate the research in developing novel approaches that would harness the imperfect data and improve the data-efficiency during training. A massive amount of user-generated data nowadays available on multiple internet services. How to leverage those and improve the machine learning models is a high impact problem. We organize the challenges in conjunction with the workshop. The goal of these challenges is to find the state-of-the-art approaches in the weakly supervised learning setting for object detection, semantic segmentation, and scene parsing. There are three tracks in the challenge, i.e., weakly supervised semantic segmentation (Track 1), weakly supervised scene parsing (Track 2), and weakly supervised object localization (Track 3). In Track 1, based on ILSVRC DET [12], we provide pixellevel annotations of 15K images from 200 categories for evaluation. In Track 2, we provide point-based annotations for the training set of ADE20K [73]. In Track 3, based on ILSVRC CLS-LOC [12], we provide pixel-level annotations of 44,271 images for evaluation [71]. Besides, we further introduce a new evaluation metric proposed by [71], i.e., IoU curve, to measure the quality of the generated object localization maps. This technical report summarizes the highlights from the challenge. The challenge submission server and the leaderboard will continue to open for the researchers who are interested in it. More details regarding the challenge and the benchmarks are available at https://lidchallenge.github.io.
Deep Convolutional Neural Networks have proven effective in solving the task of semantic segmentation. However, their efficiency heavily relies on the pixel-level annotations that are expensive to get and often require domain expertise, especially in medical imaging. Weakly supervised semantic segmentation helps to overcome these issues and also provides explainable deep learning models. In this paper, we propose a novel approach to the semantic segmentation of medical chest X-ray images with only image-level class labels as supervision. We improve the disease localization accuracy by combining three approaches as consecutive steps. First, we generate pseudo segmentation labels of abnormal regions in the training images through a supervised classification model enhanced with a regularization procedure. The obtained activation maps are then post-processed and propagated into a second classification modelInter-pixel Relation Network, which improves the boundaries between different object classes. Finally, the resulting pseudo-labels are used to train a proposed fully supervised segmentation model. We analyze the robustness of the presented method and test its performance on two distinct datasets: PASCAL VOC 2012 and SIIM-ACR Pneumothorax. We achieve significant results in the segmentation on both datasets using only image-level annotations. We show that this approach is applicable to chest X-rays for detecting an anomalous volume of air in the pleural space between the lung and the chest wall. Our code has been made publicly available 3 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.