Background: In the search for healthier and more functional foods, dietary triglycerides (TAGs) have played a prominent role in the food industry. The objective of this work was to evaluate new clay supports to immobilize lipase from Rhizopus oryzae and use it in the synthesis of TAGs.
Main methods and major results:The immobilization of lipase by physical adsorption was carried out, determining the hydrolytic activity, esterification, immobilization yield, thermal stability, and kinetic and thermodynamic parameters. Afterwards, acidolysis was carried out and the product characterized as to composition, acidity index (AI), peroxide index (PI), and analysis of the sn-2 position. The mean hydrolytic activity of free lipase was 23,568.43 ± 559.20 U g −1 and for lipase immobilized in acidified kaolin and diatomite, 1409.04 ± 51.07 and 1235.67 ± 9.56 U g -1 ; immobilization yield of 23.78% and 20.21% and esterification activity of 1827.99 and 1722.66 U g -1 , respectively, maintaining more than 60% of the relative activity after 8 h of incubation at different temperatures. The reaction using the derivative immobilized in acidified diatomite resulted in the degree of incorporation (DI) 41.53% ± 3.99%.
Conclusions and implications:From the results, the potential of diatomite and kaolin as support in the immobilization of lipase for the synthesis of dietary TAGs was verified.
Currently, the use of magnetic nanoparticles has aroused interest in industrial processes, and the combination of their properties with the immobilization of lipases has been developed in order to produce carriers of easy separation of the reaction medium. In this context, the objective of the present study was to immobilize Candida rugosa lipase in magnetic nanoparticles, such as magnetite and maghemite, by physical adsorption and covalent bonding. The biocatalysts were evaluated by infrared spectroscopy (FTIR) and hydrolytic activity analysis. Thus, from the analyses performed, the best biocatalyst obtained was the immobilized by covalent bond in maghemite, presenting a hydrolytic activity of 174.67 U/g.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.