Oscillations and oscillators appear in various fields and find applications in numerous areas. We present an oscillator with infinite equilibria in this work. The oscillator includes only nonlinear elements (quadratic, absolute, and cubic ones). It is different from common oscillators, in which there are linear elements. Special features of the oscillator are suitable for secure applications. The oscillator’s dynamics have been discovered via simulations and an electronic circuit. Chaotic attractors, bifurcation diagrams, Lyapunov exponents, and the boosting feature are presented while measurements of the implemented oscillator are reported by using an oscilloscope. We introduce a random number generator using such an oscillator, which is applied in biomedical image encryption. Moreover, the security and performance analysis are considered to confirm the correctness of encryption and decryption processes.
Recently, hidden attractors with stable equilibria have received considerable attention in chaos theory and nonlinear dynamical systems. Based on discrete fractional calculus, this paper proposes a simple two-dimensional and three-dimensional fractional maps. Both fractional maps are chaotic and have a unique equilibrium point. Results show that the dynamics of the proposed fractional maps are sensitive to both initial conditions and fractional order. There are coexisting attractors which have been displayed in terms of bifurcation diagrams, phase portraits and a 0-1 test. Furthermore, control schemes are introduced to stabilize the chaotic trajectories of the two novel systems.
Chaotic maps have simple structures but can display complex behavior. In this paper, we apply discrete memristance and a nonlinear term in order to design new memristive maps. A general model for constructing memristive maps has been presented, in which a memristor is connected in serial with a nonlinear term. By using this general model, different memristive maps have been built. Such memristive maps process special fixed points (infinite and without fixed point). A typical memristive map has been studied as an example via fixed points, bifurcation diagram, symmetry, and coexisting iterative plots.
Given the recent advances regarding the studies of discrete fractional calculus, and the fact that the dynamics of discrete-time neural networks in fractional variable-order cases have not been sufficiently documented,herein, we consider a novel class of discrete-time fractional-order neural networks using discrete nabla operator of variable-order. An adequate criterion for the existence of the solution in addition to its uniqueness for such systems is provided with the use of Banach fixed point technique. Moreover, the uniform stability is investigated. We provide at the end two numerical simulations illustrating the relevance of the aforementioned results.
Researchers have recently paid significant attention to special chaotic systems. In this work, we introduce an oscillator with different special features. In addition, the oscillator is symmetrical. The features and oscillator dynamics are discovered through different tools of nonlinear dynamics. An electronic circuit is designed to mimic the oscillator’s dynamics. Moreover, the combined synchronization of two drives and one response oscillator is reported. Numerical examples illustrate the correction of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.