This study looks at the influence of surface covers on the performance of a single pumping well system. Pilot tests were conducted on a sandy soil to determine the influence of surface confinement based upon both induced vacuum and pore gas velocity design criteria. The results demonstrate how covering the surface can significantly alter the associated air flow patterns and velocity distribution. Comparison of streamline iso-contours obtained in covered scenarios reveals that the surface seal tended to prevent air from entering the subsurface near the extraction well and force air to be drawn from a greater distance. Calculated and measured pressure differentials, for open and semi-confined scenarios, clearly show that adding a clay layer as a surface cover increased the vacuum induced within the soil. Pore gas velocity analysis showed that when the cover clay layer was used, the zone of capture of the soil vapor extraction system increased. The radius of influence of soil vapor extraction (SVE) systems, based on the attainment of a critical vacuum or pore gas velocity, can then be increased by including a surface seal in the design of such systems. The focus of this study is limited to air flow patterns contrasted between covered and uncovered conditions and not on the nuances of a full scale remediation implementation.
Taza City is among the Moroccan cities which is in full urban expansion, with a daily wastewater discharge volume estimated at 16534 m3/d in 2020, and expected to reach 20056 m3/d by 2030. These waters, collected in a combined sewerage network, are directly released into the natural environment without any treatment. Indeed, a large part of this water is discharged into Oued Defali, the main tributary of Oued Larbâa. In order to manage and better understand these discharges impact on the streams crossing this city, wastewater sampling campaigns were carried out for one year from May 2018 to April 2019 at domestic (S1) and industrial (S2) sites. The wastewater physicochemical characterization revealed that these discharges are highly loaded with organic matter in terms of chemical oxygen demand (S1 avg = 1231.44 mg/l and S2 avg = 933.03 mg/l), biochemical oxygen demand (S1 avg = 511.87 mg/l and S2 avg = 464.35 mg/l), and suspended matter (S1 avg = 744.11 mg/l and S2 avg = 578.13 mg/l). The use of principal component analysis (PCA) has allowed us to collect as much information as possible from the database of the physicochemical analyses performed for the studied parameters.
The management of municipal solid waste (MSW) is a major obstacle for the majority of municipalities in developing countries because of the impacts related to the landfilling of waste. Garbage is an energy-rich material. As a result, energy recovery is considered to be a sustainable waste management method. In Morocco, 7.4 million tons are produced annually; most of the waste is landfilled without any recovery despite the impacts related to this method of disposal. The objective of this chapter is to characterize combustible fractions (RDF) from household waste in Morocco and to study the economic and environmental benefits of their use as alternative fuels in cement kilns. The results of this research show that the combustible fractions contained in household waste in Morocco constitute a potential sustainable energy source with a high lower calorific value (4454 kcal/kg). The study of the advantages of co-incineration shows that the substitution of pet coke by 15% RDF reduces the pollution linked to gaseous emissions. In addition, the cement plant can make financial savings 389 USD/h by minimizing the use of fossil fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.