In clinically suspected urinary tract infections (UTIs), empirical antibiotic treatment is usually started long before the laboratory results of urine culture and antibiogram are available. Although molecular diagnostic approaches are being applied to the diagnosis of many infections, UTIs are generally diagnosed by traditional culture methods. Patient care could greatly benefit from the development of a rapid, accurate, inexpensive test that could be done at patient's bedside, allowing the practitioner to plan targeted, more effective therapy. Such a test would potentially reduce incorrect or unnecessary use of antibacterial drugs and reduce the emergence of bacterial resistance. In response to this pressing and unmet clinical need, several methods have been developed in the last few years. Among these, the new point-of-care test (POCT) for detecting UTIs named Micro Biological Survey (MBS) UTI CHECK holds promise, as it allows semi-quantitative determination of bacterial load in urine leading to a fast detection of UTIs and to evaluation of bacterial antibiotic susceptibility. This new technology operates through a colorimetric survey performed in low-cost, ready-to-use, disposable vials, in which 1 ml of urine is inoculated without any preliminary treatment and requiring neither specialized personnel nor a specialized equipment.
Background: Urinary tract infections (UTIs) are among the most common bacterial infections occurring in both community and health care setting. Laboratory diagnosis of UTIs is attained by conventional urine culture which identifies and quantifies infecting bacteria, followed by antibiotic susceptibility testing. This approach is time consuming and requires a considerable workload. A user-friendly, automated test for rapid bacterial quantification has been developed by MBS (a spin-off of Roma Tre University, Rome, Italy) as a point-of-care test (POCT) for UTIs. The aim of this study was to perform a preliminary clinical trial of the new MBS POCT for diagnosis and management of UTIs. Methods: A prospective diagnostic accuracy evaluation study was performed in collaboration with the Emergency Department of the Azienda Ospedaliera Sant' Andrea of Rome (Italy), on 122 patients with clinically suspected UTIs. Results of the MBS POCT were compared with those of the routine tests for urine culture and antibiotic susceptibility. Results: The MBS POCT, used in the Emergency Department, provided a UTI diagnosis in < 5 hours with very high accuracy, sensitivity and specificity. However, antibiotic susceptibility evaluation provided some false resistant results, when exceedingly high concentrations of bacteria were present in urines. Conclusion:The MBS POCT represents a valuable diagnostic tool for the detection of UTI, substantially saving time and assuring comparable quality of results, ultimately facilitating the successful management of infections. As for conventional antibiotic susceptibility tests, the bacterial inoculum is critical for significance of results.
Urinary tract infections (UTIs) are among the most common infections in all age groups. Fast and accurate diagnosis is essential to ensure a timely and effective therapy. Alongside with reference culture-based methods, several point-of-care tests (POCTs) for early detection of UTIs have been developed, but they have not been significantly implemented in current clinical practice. The Micro Biological Survey (MBS) POCT is a simple test developed by MBS Diagnostics Ltd. (London, UK) for the detection and management of UTIs. The present study has been undertaken to investigate the potentials and limits of the MBS POCT. A total of 349 patients were enrolled in two open-label, monocentric, non-interventional clinical trials in collaboration with an Emergency Medicine department and the outpatient clinic of two hospitals in Rome. Results of urine analysis using the MBS POCT were compared with those of the routine culture-based tests for UTI diagnosis performed by the hospital laboratory. The MBS POCT provided fast results revealing high bacterial count UTIs (≥ 10 5 CFU/ml) with 97% accuracy, 92% sensitivity, 100% specificity, 99% PPV, and 96% NPV within a 5-h analytical time threshold.
Running water habitats are among the most altered aquatic systems by human activities driving an increase in the organic components and the associated bacterial load as well. To contribute in improving the monitoring activities in running waters, here we tested the validity of the new Micro Biological Survey (MBS) method to specifically assess the bacterial load in running waters focusing on Total Viable Counts (at 22°C and 37°C) and Escherichia coli (at 44°C) in order to propose a new prognostic tool for watercourses. MBS method is an alternative colorimetric method for counting bacterial load in water and food samples that is easy to use and leads to a reliable and simple interpretation of results, being also faster and less expensive than traditional methods. Then, we compared MBS with the traditionally used reference method for the bacterial load, and with the most used biotic index for Italian watercourses based on the benthic invertebrates: the Extended Biotic Index (EBI). The last comparison was performed to validate the use of MBS in biomonitoring activities since the benthic invertebrate multi-species assemblage (and then EBI) alter own structure mainly depending on the organic component variation. During the first part of the study, the assessment of both linearity (regressions among bacterial concentrations) and accuracy (significant correlation between a measured value and a value used as reference) confirmed the validity of the MBS method. Second, the linear regressions between the three investigated microbial parameters vs. both physical-chemical descriptors and EBI, revealed the usefulness of MBS as a valid tool for routine microbiological analyses involved in rapid and easy field monitoring activities. This represents the first attempt to evaluate the river microbial status by exploiting the innovative MBS on running waters to propose it as new valuable monitoring tool in the biomonitoring field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.