This article focuses on non-binary wireless transmission, where "non-binary" refers to the use of non-binary Low Density Parity Check (LDPC) codes for Forward Error Correction. The complexity of the non-binary soft demapper is addressed in particular when one non-binary Galois Field (GF) symbol spreads across multiple Quadrature Amplitude Modulation (QAM) symbols and Space-Time Block Code (STBC) codewords. A strategy is devised to guarantee an efficient mapping at the transmitter, together with an algorithm at the receiver for low complexity soft Maximum Likelihood demapping. The proposed solution targets a trade-off between performance and complexity, and removes any restriction on the setting of the GF order, QAM constellation order, and STBC scheme. This makes the non-binary LDPC codes even more appealing for potential use in practical wireless communication systems.
This paper presents a practical application of an opportunistic technique for the estimation of rainfall intensity and accumulated precipitation. The proposed technique is based upon signal strength measurements made by commercial-grade interactive satellite terminals. By applying some processing, the rain-induced attenuation on the microwave downlink from the satellite is first evaluated; then the rain attenuation is eventually mapped into a rainfall rate estimate via a tropospheric model. This methodology has been applied to a test area of 30 × 30 km 2 around the city of Dortmund (North Rhine-Westphalia, upper basin of Ermscher river), for the heavy rain event that devastated western Germany in July, 2021. A rainfall map on this area is obtained from the measurements collected by a set of satellite terminals deployed in the region, and successfully compared with a map obtained with a conventional weather radar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.