The auditory brainstem response (ABR) was recorded in adult budgerigars (Melopsittacus undulatus) in response to clicks and tones. The typical budgerigar ABR waveform showed two prominent peaks occurring within 4 ms of the stimulus onset. As sound-pressure levels increased, ABR peak latency decreased, and peak amplitude increased for all waves while interwave interval remained relatively constant. While ABR thresholds were about 30 dB higher than behavioral thresholds, the shape of the budgerigar audiogram derived from the ABR closely paralleled that of the behavioral audiogram. Based on the ABR, budgerigars hear best between 1000 and 5700 Hz with best sensitivity at 2860 Hz-the frequency corresponding to the peak frequency in budgerigar vocalizations. The latency of ABR peaks increased and amplitude decreased with increasing repetition rate. This rate-dependent latency increase is greater for wave 2 as indicated by the latency increase in the interwave interval. Generally, changes in the ABR to stimulation intensity, frequency, and repetition rate are comparable to what has been found in other vertebrates.
Summary. 1. Spontaneous activity and responses to simple tonal stimuli were studied in cochlear ganglion neurones of the starling.2. Both regular and irregular spontaneous activity were recorded (Figs. I to 5). Non-auditory cells have their origin in the macula lagenae. Mean spontaneous rate for auditory cells (all irregularly spiking) was 45 spikes s-1.3. In half the units having characteristic frequencies (CFs) <1.5 kHz, time-interval histograms (TIHs) of spontaneous activity showed regularly-spaced peaks or 'preferred' intervals. The spacing of the peak intervals was, on average, 15% greater than the CF-period interval of the respective units (Fig. 11).4. In TIH of lower-frequency cells without preferred intervals, the modal interval was also on average about 15% longer than the CF-period interval (Fig. 11). Apparently, the resting oscillation frequency of these cells lies below their CF.5. Tuning curves (TCs) of neurones to short tone bursts show no systematic asymmetry as in mammals. Below CF 1 kHz, the low-frequency flanks of the TCs are, on average, steeper than the high-frequency flanks. Above CF 1 kHz, the reverse is true (Fig. 15).6. The cochlear ganglion and nerve are tonotopically organized. Low-frequency fibres arise apically in the papilla basilaris and are found near non-auditory (lagenar) fibres (Figs. 2 and 19).7. Discharge rates to short tones were monotonically related to sound presure level (Fig. 20). Saturation rates often exceeded 300 spikes s-1.8. 'On-off' responses and primary suppression of spontaneous activity were observed (Figs. 22 and 23).Abbreviations." CF characteristic frequency; TC tuning curve; TIH time interval histogram 9. A direct comparison of spontaneous activity and tuning-curve symmetry (Fig. 15b) revealed that, apart from quantative differences, fundamental qualitative differences exist between starling and guinea-pig primary afferents.
The inner ear in the group of archosaurs (birds, crocodilians, and extinct dinosaurs) shows a high degree of structural similarity, enabling predictions of their function in extinct species based on relationships among similar variables in living birds. Behavioral audiograms and morphological data on the length of the auditory sensory epithelium (the basilar papilla) are available for many avian species. By bringing different data sets together, we show that body mass and the size of the basilar papilla are significantly correlated, and the most sensitive frequency in a given species is inversely related to the body mass and the length of the basilar papilla. We also demonstrate that the frequency of best hearing is correlated with the high-frequency limit of hearing. Small species with a short basilar papilla hear higher frequencies compared with larger species with a longer basilar papilla. Based on the regression analysis of two significant correlations in living archosaurs (best audiogram frequency vs body mass and best audiogram frequency vs papillar length), we suggest that hearing in large dinosaurs was restricted to low frequencies with a high-frequency limit below 3 kHz.
The ability of three species of birds to discriminate among selected harmonic complexes with fundamental frequencies varying from 50 to 1000 Hz was examined in behavioral experiments. The stimuli were synthetic harmonic complexes with waveform shapes altered by component phase selection, holding spectral and intensive information constant. Birds were able to discriminate between waveforms with randomly selected component phases and those with all components in cosine phase, as well as between positive and negative Schroeder-phase waveforms with harmonic periods as short as 1-2 ms. By contrast, human listeners are unable to make these discriminations at periods less than about 3-4 ms. Electrophysiological measures, including cochlear microphonic and compound action potential measurements to the same stimuli used in behavioral tests, showed differences between birds and gerbils paralleling, but not completely accounting for, the psychophysical differences observed between birds and humans. It appears from these data that birds can hear the fine temporal structure in complex waveforms over very short periods. These data show birds are capable of more precise temporal resolution for complex sounds than is observed in humans and perhaps other mammals. Physiological data further show that at least part of the mechanisms underlying this high temporal resolving power resides at the peripheral level of the avian auditory system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.