The noninvasive determination of glucose in the interstitial layer of the human skin by mid-infrared spectroscopy is reported. The sensitivity for this measurement was obtained by combining the high pulse energy from an external cavity quantum cascade laser (EC-QCL) tunable in the infrared glucose fingerprint region (1000-1220 cm(-1)) focused on the skin, with a detection of the absorbance process by photoacoustic spectroscopy in the ultrasound region performed by a gas cell coupled to the skin. This combination facilitates a quantitative measurement for concentrations of skin glucose in the range from <50 mg/dL to >300 mg/dL, which is the relevant range for the glucose monitoring in diabetes patients. Since the interstitial fluid glucose level is representative of the blood glucose level and follows it without significant delay (<10 min), this method could be applied to establish a noninvasive, painless glucose measurement procedure that is urgently awaited by diabetes patients. We report here the design of the photoacoustic experiments, the spectroscopy of glucose in vivo, and the calibration method for the quantitative determination of glucose in skin. Finally, a preliminary test with healthy volunteers and volunteers suffering from diabetes mellitus demonstrates the viability of a noninvasive glucose monitoring for patients based on the combination of infrared QCL and photoacoustic detection.
The application of a novel open, windowless cell for the photoacoustic infrared spectroscopy of human skin is described. This windowless cavity is tuned for optimum performance in the ultrasound range between 50 and 60 kHz. In combination with an external cavity tunable quantum cascade laser emitting in the range from ~1000 cm(-1) to 1245 cm(-1), this approach leads to high signal-to-noise-ratio (SNR) for mid-infrared spectra of human skin. This opens the possibility to measure in situ the absorption spectrum of human epidermis in the mid-infrared region at high SNR in a few (~5) seconds. Rapid measurement of skin spectra greatly reduces artifacts arising from movements. As compared to closed resonance cells, the windowless cell exhibits the advantage that the influence of air pressure variations, temperature changes, and air humidity buildup that are caused by the contact of the cell to the skin surface can be minimized. We demonstrate here that this approach can be used for continuous and non-invasive monitoring of the glucose level in human epidermis, and thus may form the basis for a non-invasive monitoring of the glucose level for diabetes patients.
Keywords: non-invasive glucose measurement, photoacoustic spectroscopy, photothermal spectroscopy, interstitial fluid glucoseWe have reported two methods to analyze glucose in the interstitial fluid of skin based on mid-infrared excitation with a tunable quantum cascade laser and photoacoustic or photothermal detection. These methods were evaluated for optimum skin locations to obtain reproducible glucose information. The lower part of the arm, the hypothenar, the tips of the index finger and the thumb were tested. The thumb appears to be the optimal skin location, followed by the index finger. Basic requirements for an optimum site are good capillary blood perfusion, low Stratum corneum thickness and the absence of fat layers. To obtain a correlation on such a site, spectra were recorded on volunteers continuously after blood glucose manipulation. However, continuous measurements on an in vivo sample such as the skin have to cope with physiological alterations such as the formation of sweat. We have used both detection schemes to investigate the acid mantle reformation after washing during time scales similar to continuous measurements for calibration spectra. We found that reconstitution of the acid mantle of skin may be seen in less than one hour. Precleaning of the measurement site may thus be useful for intermittent, but not for long term continuous measurements.
An infrared spectroscopic technique is described that employs a mid-IR broadband (980-1245 cm) tunable quantum cascade laser (QCL) to produce a pump beam, and a detection method based on photothermal deflection, enhanced by total internal reflection. The IR spectra thus obtained are depth-dependent by modulating the pump beam with different frequencies between 10 Hz and 500 Hz. A model system consisting of glucose and a polymer film is used to demonstrate the depth selectivity of this technique. We also apply this photothermal depth profiling method to record in vivo IR spectra of the human epidermis at different depths. This information can be used for a non-invasive glucose monitoring on diabetes patients, which is also demonstrated. Beyond biomedical infrared spectroscopy, there are numerous applications for total internal reflection enhanced photothermal deflection spectroscopy (TIR-PTDS). The high penetration depth of mid-IR light compared to the traditional ATR-FTIR technique and the easy sample access make this technique appropriate for in situ measurements, such as in industrial quality control. The depth selectivity of TIR-PTDS may be a convincing argument for its use in the analysis of multilayered samples or for the analysis of artwork, where the layers of interest are covered by a layer of varnish.
We present TIR-PTD spectroscopy, an IR-pump/VIS-probe method for the measurement of IR absorption spectra by means of photothermal deflectometry (PTD) enhanced by total internal reflection (TIR). It overcomes the limitations of IR spectroscopy for the study of opaque samples and allows molecular fingerprinting of IR-active liquids or solids. Another important advantage of the presented approach over traditional IR spectroscopy methods is the ability to obtain IR information by means of VIS detection, which is generally much cheaper and easier to handle than IR detection. By application of mid-IR TIR-PTD spectroscopy on human skin in vivo, we are demonstrating the correlation between epidermal- and blood-glucose levels on a type 1 diabetic patient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.