Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most biomedically important fluids are non-Newtonian where the scallop theorem no longer holds. It should therefore be possible to realize a microswimmer that moves with reciprocal periodic body-shape changes in non-Newtonian fluids. Here we report a symmetric ‘micro-scallop’, a single-hinge microswimmer that can propel in shear thickening and shear thinning (non-Newtonian) fluids by reciprocal motion at low Re. Excellent agreement between our measurements and both numerical and analytical theoretical predictions indicates that the net propulsion is caused by modulation of the fluid viscosity upon varying the shear rate. This reciprocal swimming mechanism opens new possibilities in designing biomedical microdevices that can propel by a simple actuation scheme in non-Newtonian biological fluids.
Continuous processing gains importance in the fine chemical and pharmaceutical industries where crystallization is an important downstream operation. Seeded cooling crystallization of the L-alanine/water system was investigated under similar conditions, i.e., temperature interval, cooling rate, and seed material, both in a stirred batch vessel and in a continuous plug flow crystallizer in the coiled flow inverter (CFI) design with horizontal helical tube coils (ID = 4 mm) and frequent 90°bends of the coils. Short-cut calculations based on characteristic time scales and the Damkoḧler number allow for comparing the batch and continuous crystallization processes. The experimental results reveal crystal growth and growth rate dispersion to be dominating on the product crystal size distribution (CSD). However, at low flow rates of approximately 31 g min −1 , a moving sediment flow of the slurry was present in the CFI crystallizer, resulting in further size dispersion effects. Elevated flow rates of approximately 40 g min −1 resulted in a more homogeneous suspension flow and a product CSD comparable to batch quality. Simulation studies based on a population balance equation model strengthen the hypothesis of the solid phase residence time distribution (RTD S ) to be more spread in the moving sediment flow regime, leading to a wider product CSD.
With the increased availability of computational resources, the past decade has seen a rise in the use of computational fluid dynamics (CFD) for medical applications. There has been an increase in the application of CFD to attempt to predict the rupture of intracranial aneurysms, however, while many hemodynamic parameters can be obtained from these computations, to date, no consistent methodology for the prediction of the rupture has been identified. One particular challenge to CFD is that many factors contribute to its accuracy; the mesh resolution and spatial/temporal discretization can alone contribute to a variation in accuracy. This failure to identify the importance of these factors and identify a methodology for the prediction of ruptures has limited the acceptance of CFD among physicians for rupture prediction. The International CFD Rupture Challenge 2013 seeks to comment on the sensitivity of these various CFD assumptions to predict the rupture by undertaking a comparison of the rupture and blood-flow predictions from a wide range of independent participants utilizing a range of CFD approaches. Twenty-six groups from 15 countries took part in the challenge. Participants were provided with surface models of two intracranial aneurysms and asked to carry out the corresponding hemodynamics simulations, free to choose their own mesh, solver, and temporal discretization. They were requested to submit velocity and pressure predictions along the centerline and on specified planes. The first phase of the challenge, described in a separate paper, was aimed at predicting which of the two aneurysms had previously ruptured and where the rupture site was located. The second phase, described in this paper, aims to assess the variability of the solutions and the sensitivity to the modeling assumptions. Participants were free to choose boundary conditions in the first phase, whereas they were prescribed in the second phase but all other CFD modeling parameters were not prescribed. In order to compare the computational results of one representative group with experimental results, steady-flow measurements using particle image velocimetry (PIV) were carried out in a silicone model of one of the provided aneurysms. Approximately 80% of the participating groups generated similar results. Both velocity and pressure computations were in good agreement with each other for cycle-averaged and peak-systolic predictions. Most apparent "outliers" (results that stand out of the collective) were observed to have underestimated velocity levels compared to the majority of solutions, but nevertheless identified comparable flow structures. In only two cases, the results deviate by over 35% from the mean solution of all the participants. Results of steady CFD simulations of the representative group and PIV experiments were in good agreement. The study demonstrated that while a range of numerical schemes, mesh resolution, and solvers was used, similar flow predictions were observed in the majority of cases. To further validate the computati...
Numerically challenging, comprehensive benchmark cases are of great importance for researchers in the field of CFD. Numerical benchmark cases offer researchers frameworks to quantitatively explore limits of the computational tools and to validate them. Therefore, we focus on simulation of numerically challenging benchmark tests, laminar and transient 3D flows around a cylinder, and aim to establish a new comprehensive benchmark case by doing direct numerical simulations with three distinct CFD software packages. Although the underlying benchmark problems have been defined firstly in 1996, the first case which was a steady simulation of flow around a cylinder at Re = 20 could be accurately solved first in 2002 by John. Moreover, there is no precisely determined results for non-stationary case, the simulation of transient flow with time varying Reynolds number. The benchmark problems are studied with three CFD software packages, OpenFOAM, Ansys-CFX and FeatFlow which employ different numerical approaches to the discretization of the incompressible Navier-Stokes equations, namely finite volume method, element based finite volume method and finite element method respectively. The first benchmark test is considered as the "necessary condition" for the software tools, then they are compared according to their accuracy and performance in the second benchmark test. All the software tools successfully pass the first test and show well agreeing results for the second case such that the benchmark result was precisely determined. As a main result, the CFD software package with high order finite element approximation has been found to be computationally more efficient and accurate than the ones adopting low order space discretization methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.