Background The present study performed two distinct meta-analyses with common outcomes (sperm parameters); one was performed in obese individuals (and non-obese controls) and the other in diabetic individuals (and non-diabetic controls). Methods PubMed, Embase, The Cochrane library, Web of Science, Scopus databases were searched to collect clinical studies related to the effects of obesity and diabetes on male sperm from inception to on 1st February 2021. Statistical meta-analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The methodological quality of the included studies was assessed with the Ottawa–Newcastle scale using a star-based system. Results A total of 44 studies were finally included in the present study, which enrolled 20,367 obese patients and 1386 patients with diabetes. The meta-analysis results showed that both obesity and diabetes were associated with reduced semen volume (obese versus non-obese controls: mean difference (MD) = − 0.25, 95% CI = (− 0.33, − 0.16), p < 0.001; diabetes versus non-diabetic controls: MD = − 0.45, 95% CI = (− 0.63, − 0.27), p < 0.001), reduced sperm count (obese versus non-obese controls: MD = − 23.84, 95% CI = (− 30.36, − 17.33), p < 0.001; diabetes versus non-diabetic controls: MD = − 13.12, 95% CI = (− 18.43, − 7.82), p < 0.001), reduced sperm concentration (obese versus non-obese controls: MD = − 7.26, 95% CI = (− 10.07, − 4.46), p < 0.001; diabetes versus non-diabetic controls: MD = − 11.73, 95% CI = (− 21.44, − 2.01), p = 0.02), reduced progressive motility (obese versus non-obese controls: MD = − 5.68, 95% CI = (− 8.79, − 2.56), p < 0.001; diabetes versus non-diabetic controls: MD = − 14.37, 95% CI = (− 21.79, − 6.96), p = 0.001), and decreased testosterone levels (obese versus non-obese controls: MD = − 1.11, 95% CI = (− 1.92, − 0.30), p = 0.007; diabetes versus non-diabetic controls: MD = − 0.37, 95% CI = (− 0.63, − 0.12), p = 0.004). Conclusions Current evidence suggests that obesity and diabetes negatively affect sperm parameters in men and are associated with low testosterone levels. Due to the limitation of the number and quality of included studies, the above conclusions need to be verified by more high-quality studies.
Background This meta-analysis was performed to investigate the effects of nicotinamide adenine dinucleotide (NAD+) precursor supplementation on glucose and lipid metabolism in human body. Methods PubMed, Embase, CENTRAL, Web of Science, Scopus databases were searched to collect clinical studies related to the supplement of NAD+ precursor from inception to February 2021. Then the retrieved documents were screened, the content of the documents that met the requirements was extracted. Meta-analysis and quality evaluation was performed detection were performed using RevMan5.4 software. Stata16 software was used to detect publication bias, Egger and Begg methods were mainly used. The main research terms of NAD+ precursors were Nicotinamide Riboside (NR), Nicotinamide Mononucleotide (NMN), Nicotinic Acid (NA), Nicotinamide (NAM). The changes in the levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), and fasting blood glucose were mainly concerned. Results A total of 40 articles were included in the meta-analysis, with a sample of 14,750 cases, including 7406 cases in the drug group and 7344 cases in the control group. The results of meta-analysis showed that: NAD+ precursor can significantly reduce TG level (SMD = − 0.35, 95% CI (− 0.52, − 0.18), P < 0.0001), and TC (SMD = − 0.33, 95% CI (− 0.51, − 0.14), P = 0.0005), and LDL (SMD = − 0.38, 95% CI (− 0.50, − 0.27), P < 0.00001), increase HDL level (SMD = 0.66, 95% CI (0.56, 0.76), P < 0.00001), and plasma glucose level in the patients (SMD = 0.27, 95% CI (0.12, 0.42), P = 0.0004). Subgroup analysis showed that supplementation of NA had the most significant effect on the levels of TG, TC, LDL, HDL and plasma glucose. Conclusions In this study, a meta-analysis based on currently published clinical trials with NAD+ precursors showed that supplementation with NAD+ precursors improved TG, TC, LDL, and HDL levels in humans, but resulted in hyperglycemia, compared with placebo or no treatment. Among them, NA has the most significant effect on improving lipid metabolism. In addition, although NR and NAM supplementation had no significant effect on improving human lipid metabolism, the role of NR and NAM could not be directly denied due to the few relevant studies at present. Based on subgroup analysis, we found that the supplement of NAD+ precursors seems to have little effect on healthy people, but it has a significant beneficial effect on patients with cardiovascular disease and dyslipidemia. Due to the limitation of the number and quality of included studies, the above conclusions need to be verified by more high-quality studies.
Purpose. This systematic review and meta-analysis aim at elucidating the heterogeneity in beneficial effects of antioxidant supplementation in obese adults by exploring the differential effects of antioxidant supplementation on basic indicators of obesity, lipid metabolism, systemic antioxidant capacity, inflammatory biomarkers, and liver function. Methods. The inclusion criteria specified randomized controlled trials with antioxidant intervention for adults ( mean body mass index BMI > 30 ), from inception to Aug. 8, 2021, in the PubMed, Embase, The Cochrane Library, Web of Science, and Scopus databases. Meta-analysis and publication bias were performed using RevMan 5.4 software. Stata16 software was used to detect publication bias with Egger’s and Begg’s methods being mainly used. The data of basic indicators of obesity, lipid metabolism index, oxidative stress index, inflammatory biomarkers, and liver function index were collected to analyze the beneficial effects of antioxidant supplementation in obese patients. Results. A total of 30 studies were included in this study with a sample of 845 obese patients from the antioxidant supplementation group and 766 obese patients from the placebo control group. The meta-analysis showed that obese patients with antioxidant supplementation had lower BMI ( mean difference MD : − 0.44 [ 95 % confidence interval CI : − 0.84 , − 0.04 ], p = 0.03 ), waist circumference ( MD : − 0.78 95 % CI : − 1.45 , − 0.11 , p = 0.02 ), fasting blood glucose (FBG) level ( standardized mean difference SMD : − 4.92 95 % CI : − 6.87 , − 2.98 , p < 0.001 ) and homeostasis model assessment of insulin resistance ( MD : − 0.45 95 % CI : − 0.61 , − 0.3 , p < 0.001 ) when compared to the placebo group. Obese patients on antioxidant supplementation had lower levels of total cholesterol ( SMD : − 0.43 95 % CI : − 0.84 , − 0.02 , p = 0.04 ), triglycerides ( SMD : − 0.17 95 % CI : − 0.31 , − 0.04 , p = 0.01 ), low-density lipoprotein ( SMD : − 0.15 95 % CI : − 0.29 , − 0.01 , p = 0.03 ), malondialdehyde ( SMD : − 1.67 95 % CI : − 2.69 , − 0.65 , p = 0.001 ), and tumor necrosis factor-alpha ( SMD : − 0.29 95 % CI : − 0.56 , − 0.02 , p = 0.03 ), respectively, when compared to the placebo group. In addition, obese patients with antioxidant supplementation had higher levels of high-density lipoprotein ( SMD : 0.25 95 % CI : 0.03 , 0.46 , p = 0.03 ) and superoxide dismutase ( SMD : 1.09 95 % CI : 0.52 , 1.65 , p < 0.001 ) when compared to the placebo group. Antioxidant supplementation had no effects on other analyzed parameters including waist–hip ratio, leptin, fat mass, interleukin-6, C-reactive protein, alanine transaminase, and aspartate transaminase in obese patients. Conclusion. The meta-analysis results indicated that antioxidant supplementation exerted potential beneficial effects in obese patients by regulating FBG, oxidative stress, and inflammation, whilst more high-quality studies are required to confirm these effects. The present study may provide important insights for the treatment of clinical obesity and obesity-associated complications.
Antioxidants may provide a complementary treatment for patients with chronic diseases. Nevertheless, studies that have measured the effects of antioxidant on diabetes complications have provided conflicting results. This study aimed to elucidate the association between antioxidant and diabetic complications and to develop robust evidence for clinical decisions by systematic reviews and meta‐analysis. PubMed, Embase, The Cochrane Library, Web of Science, Scopus databases were searched to collect clinical studies related to the efficacy of antioxidants in the treatment of diabetes complications from inception to May 5, 2021. Statistical meta‐analyses were performed using the RevMan 5.4 software. Stata16 software was used to detect publication bias. The data of diabetic nephropathy (DN), diabetic nonalcoholic fatty liver disease (NAFLD), and diabetic periodontitis were collected to analyze the effect of antioxidant on diabetes and the above three complications. The meta‐analysis results showed that antioxidant treatment was associated with significantly changes in the fasting plasma glucose (FPG) (standardized mean difference [SMD]: − 0.21 [95% confidence interval [CI]: − 0.33, −0.10], p < 0.001), hemoglobin A1c (HbA1c) (MD: − 0.41 [95% CI: − 0.63, −0.18], p < 0.001), total antioxidant capacity (TAC) (SMD: 0.44 [95% CI: 0.24, 0.63], p < 0.001) and malondialdehyde (MDA) (SMD: − 0.82 [95% CI: − 1.24, −0.41], p < 0.001) than the control group. Antioxidant supplements have the potential to treat three complications of diabetes. In conclusion, the meta‐analysis results indicate that antioxidant treatment is effective clinically for diabetes mellitus and its complications.
Diabetes mellitus (DM), a high incidence metabolic disease, is related to the impairment of male spermatogenic function. Spermidine (SPM), one of the biogenic amines, was identified from human seminal plasma and believed to have multiple pharmacological functions. However, there exists little evidence that reported SPM’s effects on moderating diabetic male spermatogenic function. Thus, the objective of this study was to investigate the SPM’s protective effects on testicular spermatogenic function in streptozotocin (STZ)-induced type 1 diabetic mice. Therefore, 40 mature male C57BL/6 J mice were divided into four main groups: the control group (n = 10), the diabetic group (n = 10), the 2.5 mg/kg SPM-treated diabetic group (n = 10) and the 5 mg/kg SPM-treated diabetic group (n = 10), which was given intraperitoneally for 8 weeks. The type 1 diabetic mice model was established by a single intraperitoneal injection of STZ 120 mg/kg. The results showed that, compare to the control group, the body and testis weight, as well the number of sperm were decreased, while the rate of sperm malformation was significantly increased in STZ-induced diabetic mice. Then the testicular morphology was observed, which showed that seminiferous tubule of testis were arranged in mess, the area and diameter of which was decreased, along with downregulated anti-apoptotic factor (Bcl-2) expression, and upregulated pro-apoptotic factor (Bax) expression in the testes. Furthermore, testicular genetic expression levels of Sertoli cells (SCs) markers (WT1, GATA4 and Vimentin) detected that the pathological changes aggravated observably, such as the severity of tubule degeneration increased. Compared to the saline-treated DM mice, SPM treatment markedly improved testicular function, with an increment in the body and testis weight as well as sperm count. Pro-apoptotic factor (Bax) was down-regulated expression with the up-regulated expression of Bcl-2 and suppression of apoptosis in the testes. What’s more, expression of WT1, GATA4, Vimentin and the expressions of glycolytic rate-limiting enzyme genes (HK2, PKM2, LDHA) in diabetic testes were also upregulated by SPM supplement. The evidence derived from this study indicated that the SMP’s positive effect on moderating spermatogenic disorder in T1DM mice’s testis. This positive effect is delivered via promoting spermatogenic cell proliferation and participating in the glycolytic pathway’s activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.