The arid coasts of North Africa, extending over 4633 km from the Gulf of Tunis to the Nile Delta, are undergoing pronounced shoreline retreats and coastal floodings that are reported as a consequence of the ongoing sea level rise resulting from global warming. Of particular interest are the abnormal shoreline dynamics for deltaic and sandy beaches, which are severely impacted by abrupt decadal variabilities in both climatic and anthropogenic drivers resulting in their increased vulnerability to disturbances from coastal hazards. Unfortunately, the evolution, distribution and impacts of these drivers remain largely unquantified, let alone understood, for these extensive arid coasts that harbor the major portion of North Africa’s population as well as unique and fragile marine ecosystems. To address this deficiency, we use GIS-based multi-criteria approaches combined with analytic hierarchy process to map the Coastal Vulnerability Index and the Socioeconomic Vulnerability Index along these coasts to investigate the amplitude and extent of shoreline deterioration resulting from sudden fluctuations in sediment transport to the coastline. We use the western bay of the Gulf of Tunis, the coasts of Tripoli and the Nile Delta as three validation sites for our vulnerability assessment. The statistical Integrated Coastal Vulnerability Index map reveals that 47% of arid North African coasts are characterized by high to very high vulnerability. In particular, we observe that the densely populated deltaic coasts in both Tunisia and Egypt are 70% more vulnerable than any others coast in the eastern Mediterranean Basin. These abnormally high-vulnerability extensive areas are also correlated with significant deterioration of coastal aquifers and hence in crop production, compromising local food security and resulting in increasing outflow migration trends. Both Tunisia and Egypt observed dramatic increases in the net population outflow migration by respectively 62% and 248% between 2000 and 2016, mostly from coastal areas. Our source analysis of the amplitude and extent of these high coastal vulnerabilities suggests that they result from the anthropogenic drivers of damming and rapid urban growth over the last few decades rather than the effects of global warming.
The aim of this study is the reconstitution of the recent morpho-sedimentary evolution of the Medjerda River delta. We examine the spatio-temporal evolution of the Medjerda shoreline between 1936 and 2016 using satellite images, complemented by sedimentological and geochemical analyses and 210 Pbex and 137 Cs radiometric data. The general tendency of the shoreline evolution shows an increasing progradation (300 ± 12 m) between 1936 and 2016. Yet the mesoscale Net Shoreline Movement position (NSM) and the End Point Rate (EPR) reveal an erosion pattern estimated to be À20 m ± 0.15 m/yr during the period 1988e1999. The sedimentological analyses reveal four main lithostratigraphic units. The fine sand substratum layer (Md ¼ 0.08 mm) decreases toward clay and silt facies (Md < 0.063 mm), rich in continental plant debris. The geochemical results reveal gradual incoming of the terrigenous component instead of marine deposits. The 137 Cs/ 210 Pbex radiometric dating confirms the functioning of the new river flow by the 1950s with the highest sedimentation rate being 3.3 cm/yr. Our results show that the Sidi-Salem dam impoundment (1981) led to a dramatic reduction of sediment discharge, a decrease of the grain size with nearly no more sand reaching the coast, and the shoreline retreat.
Abstract. The sedimentary contributions of the Medjerda to the coastal zone are poorly measured, and there is no chronicle of observations. In this context, the sediment monitoring appears indispensable for the quantification of sediment transport at the outlet. This study focuses on the largest watershed in Tunisia, the Wadi Medjerda (23 600 km2). The main objective of this work is to assess the reduction of sediment transport following anthropogenic intensification on the basin, especially since the construction of many large dams. In order to collect information on actual deposits over several years, the paleo-hydrological approach was applied through the study of sediment cores sampled in the low valley meanders on alluvial terraces, after the last dam (Sidi Salem, the largest water storage capacity over the basin), but before the estuary to avoid marine influence and near a hydrological station (Jdaida). The sedimentary deposits of the river provide key information on the past sedimentary inputs. A visible succession of sedimentary layers corresponding to the deposits of successive floods on the study site has been determined and the history of the sedimentary contributions of the Medjerda is reconstructed by this approach. The thickest layers of sedimentary deposits are related to exceptional events. They are mainly concentrated on the lower part of the core and are mainly composed of sands. The first 1.2 m of the core from the bottom upward relates to 10 years of river discharges, as can be determined from the 137Cs datation. The next upward 1.05 m of core relates to the following 20 years of discharges, up to 1981, date of the construction of the Sidi Salem dam, and is composed of a mix of sand, silts and clays. The last 75 cm of core near the surface is only composed of clays with thin silt bands, and relates to a period of 32 years. We thus observe that there is no more sand deposits in the river bed since the construction of the Sidi Salem dam. The deficit of sediment supply to the sea is viewed as a major factor to be taken into account for better understanding of the dynamics of coastal areas in the context of global climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.