Although maintained by multiple arousal systems, wakefulness falters if orexin (hypocretin), orexin receptors, or orexin neurons are deficient; narcolepsy results with hypersomnolence or sudden onset of rapid eye movement sleep [or paradoxical sleep (PS)] and loss of muscle tonus. To learn how orexin neurons maintain wakefulness, we recorded neurons in head-fixed rats across the sleep-waking cycle and then labeled them with Neurobiotin to identify them by immunohistochemistry. We show that identified orexin neurons discharge during active waking, when postural muscle tone is high in association with movement, decrease discharge during quiet waking in absence of movement, and virtually cease firing during sleep, when postural muscle tone is low or absent. During PS, they remain relatively silent in association with postural muscle atonia and most often despite phasic muscular twitches. They increase firing before the end of PS and thereby herald by several seconds the return of waking and muscle tone. The orexin neurons would thus stimulate arousal, while antagonizing sleep and muscle atonia.
It is known that acetylcholine can stimulate activation and promote plasticity in the cerebral cortex, yet it is not known how the cholinergic basal forebrain neurons, which release acetylcholine in the cortex, discharge in relation to natural cortical activity and sleep-wake states. By recording basal forebrain units in association with electroencephalographic activity across the sleep-wake cycle and labeling individual neurons with Neurobiotin for immunohistochemical identification, we show for the first time that cholinergic neurons discharge in bursts at maximal rates during active waking and paradoxical sleep, when gamma and theta electroencephalographic activity are maximal. They virtually cease firing during slow-wave sleep. Notably, their bursting discharge is synchronized with theta oscillations. Through their maximal firing and rhythmic theta discharge during active waking and paradoxical sleep, the cholinergic neurons can thus modulate the cortex to promote activation along with plasticity during these two states.
This study investigated how different expected rewards influence behavior-related neuronal activity in the anterior striatum. In a spatial delayed-response task, monkeys reached for a left or right target and obtained a small quantity of one of two juices (apple, grenadine, orange, lemon, black currant, or raspberry). In each trial, an initial instruction picture indicated the behavioral target and predicted the reward. Nonmovement trials served as controls for movement relationships. Consistent preferences in special reward choice trials and differences in anticipatory licks, performance errors, and reaction times indicated that animals differentially expected the rewards predicted by the instructions. About 600 of >2,500 neurons in anterior parts of caudate nucleus, putamen, and ventral striatum showed five forms of task-related activations, comprising responses to instructions, spatial or nonspatial activations during the preparation or execution of the movement, and activations preceding or following the rewards. About one-third of the neurons showed different levels of task-related activity depending on which liquid reward was predicted at trial end. Activations were either higher or lower for rewards that were preferred by the animals as compared with nonpreferred rewards. These data suggest that the expectation of an upcoming liquid reward may influence a fraction of task-related neurons in the anterior striatum. Apparently the information about the expected reward is incorporated into the neuronal activity related to the behavioral reaction leading to the reward. The results of this study are in general agreement with an account of goal-directed behavior according to which the outcome should be represented already at the time at which the behavior toward the outcome is performed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.