At present, radiation-attenuated plasmodia sporozoites ( gamma -spz) is the only vaccine that induces sterile and lasting protection in malaria-naive humans and laboratory rodents. However, gamma -spz are not without risks. For example, the heterogeneity of the gamma -spz could explain occasional breakthrough infections. To avoid this possibility, we constructed a double-knockout P. berghei parasite by removing 2 genes, UIS3 and UIS4, that are up-regulated in infective spz. We evaluated the double-knockout Pbuis3(-)/4(-) parasites for protective efficacy and the contribution of CD8(+) T cells to protection. Pbuis3(-)/4(-) spz induced sterile and protracted protection in C57BL/6 mice. Protection was linked to CD8(+) T cells, given that mice deficient in beta (2)m were not protected. Pbuis3(-)/4(-) spz-immune CD8(+) T cells consisted of effector/memory phenotypes and produced interferon- gamma . On the basis of these observations, we propose that the development of genetically attenuated P. falciparum parasites is warranted for tests in clinical trials as a pre-erythrocytic stage vaccine candidate.
A sustained CD4+ Th1-dominated type 1 immune response is required to successfully control Mycobacterium tuberculosis infection. Considerable work has demonstrated that the transcription factor, T-bet, is required for IFN-γ expression and fundamental to the generation of type 1 immunity in multiple cell types. Mice lacking T-bet are susceptible to virulent M. tuberculosis infection. Susceptibility of T-bet-deficient mice is associated with increased systemic bacterial burden, diminished IFN-γ production, and the striking accumulation of eosinophilic macrophages and multinucleated giant cells in the lung. Interestingly, T-bet−/− mice did not develop a fully polarized Th2 response toward M. tuberculosis, but exhibited selective elevation of IL-10 production. These results indicate that T-bet plays a central role in controlling M. tuberculosis disease progression, in part through the regulation of both IFN-γ and IL-10.
Immunization with radiation (γ)-attenuated Plasmodia sporozoites (γ-spz) confers sterile and long-lasting immunity against malaria liver-stage infection. In the P. berghei γ-spz model, protection is linked to liver CD8+ T cells that express an effector/memory (TEM) phenotype, (CD44hiCD45RBloCD62Llo ), and produce IFN-γ. However, neither the antigen presenting cells (APC) that activate these CD8+ TEM cells nor the site of their induction have been fully investigated. Because conventional (c)CD8α+ DC (a subset of CD11c+ DC) are considered the major inducers of CD8+ T cells, in this study we focused primarily on cCD8α+ DC from livers of mice immunized with Pb γ-spz and asked whether the cCD8α+ DC might be involved in the activation of CD8+ TEM cells. We demonstrate that multiple exposures of mice to Pb γ-spz lead to a progressive and nearly concurrent accumulation in the liver but not the spleen of both the CD11c+NK1.1− DC and CD8+ TEM cells. Upon adoptive transfer, liver CD11c+NK1.1− DC from Pb γ-spz-immunized mice induced protective immunity against sporozoite challenge. Moreover, in an in vitro system, liver cCD8α+ DC induced naïve CD8+ T cells to express the CD8+ TEM phenotype and to secrete IFN-γ. The in vitro induction of functional CD8+ TEM cells by cCD8α+ DC was inhibited by anti-MHC class I and anti-IL-12 mAbs. These data suggest that liver cCD8α+ DC present liver-stage antigens to activate CD8+ TEM cells, the pre-eminent effectors against pre-erythrocytic malaria. These results provide important implications towards a design of anti-malaria vaccines.
The need for SARS-CoV-2 next-generation vaccines has been highlighted by the rise of variants of concern (VoC) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of prefusion SARS-CoV-2 Spike (S), S1 and RBD. These immunogens induce robust S-binding, ACE2-inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2. A Spike-ferritin nanoparticle (SpFN) vaccine elicits neutralizing titers (ID
50
> 10,000) following a single immunization, while RBD-Ferritin nanoparticle (RFN) immunogens elicit similar responses after two immunizations, and also show durable and potent neutralization against circulating VoC. Passive transfer of IgG purified from SpFN- or RFN-immunized mice protects K18-hACE2 transgenic mice from a lethal SARS-CoV-2 challenge. Furthermore, S-domain nanoparticle immunization elicits ACE2 blocking activity and ID50 neutralizing antibody titers >2,000 against SARS-CoV-1, highlighting the broad response elicited by these immunogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.