BackgroundTick-borne relapsing fever spirochetes are maintained in endemic foci that involve a diversity of small mammals and argasid ticks in the genus Ornithodoros. Most epidemiological studies of tick-borne relapsing fever in West Africa caused by Borrelia crocidurae have been conducted in Senegal. The risk for humans to acquire relapsing fever in Mali is uncertain, as only a few human cases have been identified. Given the high incidence of malaria in Mali, and the potential to confuse the clinical diagnosis of these two diseases, we initiated studies to determine if there were endemic foci of relapsing fever spirochetes that could pose a risk for human infection.Methodology/Principal FindingsWe investigated 20 villages across southern Mali for the presence of relapsing fever spirochetes. Small mammals were captured, thin blood smears were examined microscopically for spirochetes, and serum samples were tested for antibodies to relapsing fever spirochetes. Ornithodoros sonrai ticks were collected and examined for spirochetal infection. In total, 11.0% of the 663 rodents and 14.3% of the 63 shrews tested were seropositive and 2.2% of the animals had active spirochete infections when captured. In the Bandiagara region, the prevalence of infection was higher with 35% of the animals seropositive and 10% infected. Here also Ornithodoros sonrai were abundant and 17.3% of 278 individual ticks tested were infected with Borrelia crocidurae. Fifteen isolates of B. crocidurae were established and characterized by multi-locus sequence typing.Conclusions/SignificanceThe potential for human tick-borne relapsing fever exists in many areas of southern Mali.
BackgroundLassa fever is an acute viral illness characterized by multi-organ failure and hemorrhagic manifestations. Lassa fever is most frequently diagnosed in Nigeria, Sierra Leone, Liberia, and Guinea, although sporadic cases have been recorded in other West African countries, including Mali. The etiological agent of Lassa fever is Lassa virus (LASV), an Arenavirus which is maintained in nature and frequently transmitted to humans by Mastomys natalensis. The purpose of this study was to better define the geographic distribution of LASV-infected rodents in sub-Saharan Mali.Methodologies/Principal FindingsSmall mammals were live-trapped at various locations across Mali for the purpose of identifying potential zoonotic pathogens. Serological and molecular assays were employed and determined LASV infected rodents were exclusively found in the southern Mali near the border of Côte d'Ivoire. Overall, 19.4% of Mastomys natalensis sampled in this region had evidence of LASV infection, with prevalence rates for individual villages ranging from 0 to 52%. Full-length genomic sequences were determined using high throughput sequencing methodologies for LASV isolates generated from tissue samples of rodents collected in four villages and confirmed the phylogenetic clustering of Malian LASV with strain AV.Conclusions/SignificanceThe risk of human infections with LASV is greatest in villages in southern Mali. Lassa fever should be considered in the differential diagnosis for febrile individuals and appropriate diagnostic techniques need to be established to determine the incidence of infection and disease in these regions.
Disease burden within cattle is a concern around the world. Bovine borreliosis, one such disease, is caused by the spirochete Borrelia theileri transmitted by the bite of an infected Rhipicephalus (Boophilus) species tick. A number of species within the genus are capable of transmitting the agent and are found on multiple continents. Cattle in the West African nation of Mali are infested with 4 species of Rhipicephalus ticks of the subgenus Boophilus: Rhipicephalus annulatus, Rhipicephalus microplus, Rhipicephalus decoloratus, and Rhipicephalus geigyi. To date, no reports of B. theileri within Mali have been documented. We tested 184 Rhipicephalus spp. ticks by PCR that were removed from cattle at a market near Bamako, Mali. One tick, R. geigyi, was positive for B. theileri, which confirmed the presence of this spirochete in Mali.
A high percentage (up to 90%) of dromedary camels in the Middle East as well as eastern and central Africa have antibodies to Middle East respiratory syndrome coronavirus (MERS-CoV). Here we report comparably high positivity of MERS-CoV antibodies in dromedary camels from northern Mali. This extends the range of MERS-CoV further west in Africa than reported to date and cautions that MERS-CoV should be considered in cases of severe respiratory disease in the region.
The high rate documented in this study highlights the need for increased surveillance. Lassa Virus Seroprevalence, Mali
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.