Abstract-Interconnected everyday objects, either via public or private networks, are gradually becoming reality in modern life -often referred to as the Internet of Things (IoT) or Cyber-Physical Systems (CPS). One stand-out example are those systems based on Unmanned Aerial Vehicles (UAVs). Fleets of such vehicles (drones) are prophesied to assume multiple roles from mundane to high-sensitive applications, such as prompt pizza or shopping deliveries to the home, or to deployment on battlefields for battlefield and combat missions. Drones, which we refer to as UAVs in this paper, can operate either individually (solo missions) or as part of a fleet (group missions), with and without constant connection with a base station. The base station acts as the command centre to manage the drones' activities; however, an independent, localised and effective fleet control is necessary, potentially based on swarm intelligence, for several reasons: 1) an increase in the number of drone fleets; 2) fleet size might reach tens of UAVs; 3) making time-critical decisions by such fleets in the wild; 4) potential communication congestion and latency; and 5) in some cases, working in challenging terrains that hinders or mandates limited communication with a control centre, e.g. operations spanning long period of times or military usage of fleets in enemy territory. This self-aware, mission-focused and independent fleet of drones may utilise swarm intelligence for a), air-traffic or flight control management, b) obstacle avoidance, c) self-preservation (while maintaining the mission criteria), d) autonomous collaboration with other fleets in the wild, and e) assuring the security, privacy and safety of physical (drones itself) and virtual (data, software) assets. In this paper, we investigate the challenges faced by fleet of drones and propose a potential course of action on how to overcome them.
We investigate infinite horizon deterministic optimal control problems with both gradual and impulsive controls, where any finitely many impulses are allowed simultaneously. Both discounted and long run time average criteria are considered. We establish very general and at the same time natural conditions, under which the dynamic programming approach results in an optimal feedback policy. The established theoretical results are applied to the Internet congestion control, and by solving analytically and nontrivially the underlying optimal control problems, we obtain a simple threshold-based active queue management scheme, which takes into account the main parameters of the transmission control protocols, and improves the fairness among the connections in a given network.
In this paper, we seek to address the data gathering in the continually growing Wireless Sensor Networks (WSNs) with the intention to save the nodes' energy. In order to address usual WSN problems, such as data losses, collisions and re-transmissions, a twofold data compression pattern is proposed. We consider that a restricted number of sensor nodes are selected to be active and represent the whole network, while the rest of nodes remain idle and do not participate at all in the data sensing and transmission. Furthermore, the set of active nodes' readings is efficiently reduced, in each time slot, according to the cluster scheduling. Relying on the existing Matrix Completion (MC) techniques, the sink node is unable to recover the entire data matrix due to the existence of completely empty rows that correspond to the inactive nodes, which can be considered as absent nodes for a very long period, or nodes that do not exist at all. Thereby, we propose a complementary interpolation technique, based on a minimization problem that benefits from sensor nodes inter-correlation, to guarantee the reconstruction of all the empty rows, despite their large number. The simulations confirm the efficiency of the proposed approach and show that it outperforms the existing one by up to 70.101% of Normalized Mean Absolute Error on all missed elements, when the number of active nodes is of about 10% of the total number of sensor nodes.
Device coordination in open spectrum systems is a challenging problem, particularly since users experience varying spectrum availability over time and location. In this paper, we propose a game theoretical approach that allows cognitive radio pairs, namely the primary user (PU) and the secondary user (SU), to update their transmission powers and frequencies simultaneously. Specifically, we address a Stackelberg game model in which individual users attempt to hierarchically access to the wireless spectrum while maximizing their energy efficiency. A thorough analysis of the existence, uniqueness and characterization of the Stackelberg equilibrium is conducted. In particular, we show that a spectrum coordination naturally occurs when both actors in the system decide sequentially about their powers and their transmitting carriers. As a result, spectrum sensing in such a situation turns out to be a simple detection of the presence/absence of a transmission on each sub-band. We also show that when users experience very different channel gains on their two carriers, they may choose to transmit on the same carrier at the Stackelberg equilibrium as this contributes enough energy efficiency to outweigh the interference degradation caused by the mutual transmission. Then, we provide an algorithmic analysis on how the PU and the SU can reach such a spectrum coordination using an appropriate learning process. We validate our results through extensive simulations and compare the proposed algorithm to some typical scenarios including the noncooperative case in [1] and the throughput-based-utility systems. Typically, it is shown that the proposed Stackelberg decision approach optimizes the energy efficiency while still maximizing the throughput at the equilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.