New components and functions of the renin-angiotensin system (RAS) are still being unravelled. The classical RAS as it looked in the middle 1970s consisted of circulating renin, acting on angiotensinogen to produce angiotensin I, which in turn was converted into angiotensin II (Ang II) by angiotensin-converting enzyme (ACE). Ang II, still considered the main effector of RAS was believed to act only as a circulating hormone via angiotensin receptors, AT1 and AT2. Since then, an expanded view of RAS has gradually emerged. Local tissue RAS systems have been identified in most organs. Recently, evidence for an intracellular RAS has been reported. The new expanded view of RAS therefore covers both endocrine, paracrine and intracrine functions. Other peptides of RAS have been shown to have biological actions; angiotensin 2-8 heptapeptide (Ang III) has actions similar to those of Ang II. Further, the angiotensin 3-8 hexapeptide (Ang IV) exerts its actions via insulin-regulated amino peptidase receptors. Finally, angiotensin 1-7 (Ang 1-7) acts via mas receptors. The discovery of another ACE2 was an important complement to this picture. The recent discovery of renin receptors has made our view of RAS unexpectedly complex and multilayered. The importance of RAS in cardiovascular disease has been demonstrated by the clinical benefits of ACE inhibitors and AT1 receptor blockers. Great expectations are now generated by the introduction of renin inhibitors. Indeed, RAS regulates much more and diverse physiological functions than previously believed.
Cellular senescence, defined as arrest during the cell cycle (G₀), is involved in the complex process of the biological ageing of tissues, organs, and organisms. Senescence is driven by many factors including oxidative stress, the DNA damage and repair response, inflammation, mitogenic signals, and telomere shortening. Telomeres are shortened by each cell division until a critical length is reached and dysfunction ensues. DNA-repair pathways are then recruited and cells enter senescence, losing their capacity to proliferate. In addition to cell division, factors causing telomere shortening include DNA damage, inflammation, and oxidative stress. Both cardiovascular risk factors and common cardiovascular diseases, such as atherosclerosis, heart failure, and hypertension, are associated with short leucocyte telomeres, but causality remains undetermined. Telomere length does not satisfy strict criteria for being a biomarker of ageing, but adds predictive power to that of chronological age, and can be considered a marker of cardiovascular ageing. The 'senescence-associated secretory phenotype' of senescent cells exerts a wide range of autocrine and paracrine activities aimed at tissue repair, but which also fuel degenerative and proliferative alterations that contribute to cardiovascular disease. In this Review, the relationship between telomere shortening, senescence, and cardiovascular disease is discussed.
The generation of reactive oxygen species (ROS) is a fundamental aspect of normal human biology. However, when ROS generation exceeds endogenous antioxidant capacity, oxidative stress arises. If unchecked, ROS production and oxidative stress mediate tissue and cell damage that can spiral in a cycle of inflammation and more oxidative stress. This article is Part 1 of a 3-part series covering The Role of Oxidative Stress in Cardiovascular Disease. The broad theme of this first paper is the mechanisms and biology of oxidative stress. Specifically, we review the basic biology of oxidative stress, relevant aspects of mitochondrial function, and stress-related cell death pathways (apoptosis and necrosis) as they relate to the heart and cardiovascular system. We then explore telomere biology and cell senescence. As important regulators and sensors of oxidative stress, telomeres are segments of repetitive nucleotide sequence at each end of a chromosome that protect the chromosome ends from deterioration.
Telomeres are located at the end of chromosomes. They are composed of repetitive TTAGGG tandem repeats and associated proteins of crucial importance for telomere function. Telomeric DNA is shortened by each cell division until a critical length is achieved and the cell enters senescence and eventually apoptosis. Telomeres are therefore considered a 'biological clock' of the cell. Telomerase adds nucleotides to telomeric DNA thereby contributing to telomere maintenance, genomic stability, functions, and proliferative capacity of the cell. In certain rare forms of progeria, point mutations within the telomere lead to accelerated telomere attrition and premature aging. Endogenous factors causing telomere shortening are aging, inflammation, and oxidative stress. Leukocyte telomere length (LTL) shortening is inhibited by estrogen and endogenous antioxidants. Accelerated telomere attrition is associated with cardiovascular risk factors such as age, gender, obesity, smoking, sedentary life-style, excess alcohol intake, and even mental stress. Cardiovascular (CV) diseases and CV aging are usually but not invariably associated with shorter telomeres than in healthy subjects. LTL appears to be a biomarker of CV aging, reflecting the cumulative burden of endogenous and exogenous factors negatively affecting LTL. Whether accelerated telomere shortening is cause or consequence of CV aging and disease is not clear.
). Progression was defined as a change in albuminuria to a higher level.Results. Progression occurred in 21 patients. Progressors had shorter mean telomere length (8.1 ± 0.7 kb, mean ± SD; P = 0.017) and higher percentage of short telomeres (32.0 ± 8%, P = 0.002) than nonprogressors (8.5 ± 0.7 kb and 27 ± 7.2%, respectively). Thus, both shorter telomeres (HR = 0.190, 95%CI 0.065-0.558, P = 0.0025) and higher proportion of short telomeres (HR = 1.115, 1.039-1.195, P = 0.0023) were independent predictors of diabetic nephropathy. Telomere length was not associated with the degree of albuminuria and was not different in patients with type 1 diabetes compared with healthy controls.Conclusions. Short telomeres are independent predictors of progression of diabetic nephropathy in patients with type 1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.