Abstract-Modern AUV designs must handle submerged autonomous operation for long periods of time. The state of the art solution embedded in the HUGIN AUVs is a Doppler Velocity Log (DVL) aided Inertial Navigation System (INS) that can integrate various forms of position measurement updates. In autonomous operations, position updates are only available in limited periods of time or space, thus the core velocity aided inertial navigation system must exhibit high accuracy. However, position uncertainty of a DVL aided inertial navigation system will eventually drift off, compromising either mission operation or requirements for accurate positioning of payload data. To meet the requirements for a range of military and civilian AUV applications, the HUGIN vehicles come with a flexible and powerful set of navigation techniques. Methods for position updates include GPS surface fix, DGPS-USBL, Underwater Transponder Positioning (UTP) and bathymetric terrain navigation. Based on synthetic aperture sonar technology, a potentially revolutionary accurate velocity measurement is under development. HUGIN also comes with a navigation post-processing system (NavLab), which can be applied to increase navigational integrity and maximize position accuracy.
Modern AUV designs must handle submerged autonomous operation for long periods of time. The state of the art solution embedded in the HUGIN AUVs is a Doppler Velocity Log (DVL) aided Inertial Navigation System (INS) that can integrate various forms of position measurement updates. In autonomous operations, position updates are only available in limited periods of time or space, thus the core velocity aided inertial navigation system must exhibit high accuracy However, position uncertainty of a DVL aided inertial navigation system will eventually drift off, compromising either mission operation or requirements for accurate positioning of payload data. To meet the requirements for a range of military and civilian AUV applications, the HUGIN vehicles come with a flexible and powerful set of navigation techniques. Methods for position updates include GPS surface fix, DGPS-USBL, Underwater Transponder Positioning (UTP) and bathymetric terrain navigation. Based on synthetic aperture sonar technology, a potentially revolutionary accurate velocity measurement is under development. HUGIN also comes with a navigation post-processing system (NavLab), which can be applied to increase navigational integrity and maximize position accuracy
Submerged long endurance autonomous missions are a real challenge for the navigation systems of autonomous underwater vehicles (AUV). Terrain navigation is a promising technique for obtaining submerged position updates for the navigation system. This paper describes a real-time terrain navigation system developed for the HUGIN AUV, and reports of sea trials, where HUGIN 1000 HUS was navigating accurately in real-time with terrain navigation as the only source for position updates during long transit legs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.