Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG.
Aim:
To study the microvascular density of the macular and optic nerve head in healthy and glaucoma subjects using optical coherence tomography angiography.
Methodology:
We performed a cross-sectional cohort study on healthy subjects and patients with glaucoma. The AngioVue Enhanced Microvascular Imaging System was used to capture the optic nerve head and macula images during one visit. En face segment images of the macular and optic disc were studied in layers. Microvascular density of the optic nerve head and macula were quantified by the number of pixels measured by a novel in-house developed software. Areas under the receiver operating characteristic curves (AUROC) were used to determine the accuracy of differentiating between glaucoma and healthy subjects.
Results:
A total of 24 (32 eyes) glaucoma subjects (57.5±9.5-y old) and 29 (58 eyes) age-matched controls (51.17±13.5-y old) were recruited. Optic disc and macula scans were performed showing a greater mean vessel density (VD) in healthy compared with glaucoma subjects. The control group had higher VD than the glaucoma group at the en face segmented layers of the optic disc (optic nerve head: 0.209±0.05 vs. 0.110±0.048, P<0.001; vitreoretinal interface: 0.086±0.045 vs. 0.052±0.034, P=0.001; radial peripapillary capillary: 0.146±0.040 vs. 0.053±0.036, P<0.001; and choroid: 0.228±0.074 vs. 0.165±0.062, P<0.001). Similarly, the VD at the macula was also greater in controls than glaucoma patients (superficial retina capillary plexus: 0.115±0.016 vs. 0.088±0.027, P<0.001; deep retina capillary plexus: 0.233±0.027 vs. 0.136±0.073, P<0.001; outer retinal capillary plexus: 0.190±0.057 vs. 0.136±0.105, P=0.036; and choriocapillaris: 0.225±0.053 vs. 0.153±0.068, P<0.001. The AUROC was highest for optic disc radial peripapillary capillary (0.96), followed by nerve head (0.92) and optic disc choroid (0.76). At the macula, the AUROC was highest for deep retina (0.86), followed by choroid (0.84), superficial retina (0.81), and outer retina (0.72).
Conclusions:
Microvascular density of the optic disc and macula in glaucoma patients was reduced compared with healthy controls. VD of both optic disc and macula had a high diagnostic ability in differentiating healthy and glaucoma eyes.
Our study showed that patients with HIV have significant variations in retinal vasculature. Retinal vascular imaging may offer further insight into the pathophysiology behind HIV-related vascular disease in future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.