SUMMARYReal-time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real-time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree-of-freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real-time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real-time testing to ensure the continuous movement of the servo-hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real-time hybrid test results of single-degree-of-freedom and multi-degree-of-freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real-time hybrid test results to be achieved.
Real-time pseudodynamic (PSD) testing is an experimental technique for evaluating the dynamic behaviour of a complex structure. During the test, when the targeted command displacements are not achieved by the test structure, or a delay in the measured restoring forces from the test structure exists, the reliability of the testing method is impaired. The stability and accuracy of real-time PSD testing in the presence of amplitude error and a time delay in the restoring force is presented. Systems consisting of an elastic single degree of freedom (SDOF) structure with load-rate independent and dependent restoring forces are considered. Bode plots are used to assess the effects of amplitude error and a time delay on the steady-state accuracy of the system. A method called the pseudodelay technique is used to derive the exact solution to the delay differential equation for the critical time delay that causes instability of the system. The solution is expressed in terms of the test structure parameters (mass, damping, stiffness). An error in the restoring force amplitude is shown to degrade the accuracy of a real-time PSD test but not destabilize the system, while a time delay can lead to instability. Example calculations are performed for determining the critical time delay, and numerical simulations with both a constant delay and variable delay in the restoring force are shown to agree well with the stability limit for the system based on the critical time delay solution. The simulation models are also used to investigate the effects of a time delay in the PSD test of an inelastic SDOF system. The effect of energy dissipation in an inelastic structure increases the limit for the critical time delay, due to the energy removed from the system by the energy dissipation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.