SUMMARYReal-time hybrid testing combines experimental testing and numerical simulation, and provides a viable alternative for the dynamic testing of structural systems. An integration algorithm is used in real-time hybrid testing to compute the structural response based on feedback restoring forces from experimental and analytical substructures. Explicit integration algorithms are usually preferred over implicit algorithms as they do not require iteration and are therefore computationally efficient. The time step size for explicit integration algorithms, which are typically conditionally stable, can be extremely small in order to avoid numerical stability when the number of degree-of-freedom of the structure becomes large. This paper presents the implementation and application of a newly developed unconditionally stable explicit integration algorithm for real-time hybrid testing. The development of the integration algorithm is briefly reviewed. An extrapolation procedure is introduced in the implementation of the algorithm for real-time testing to ensure the continuous movement of the servo-hydraulic actuator. The stability of the implemented integration algorithm is investigated using control theory. Real-time hybrid test results of single-degree-of-freedom and multi-degree-of-freedom structures with a passive elastomeric damper subjected to earthquake ground motion are presented. The explicit integration algorithm is shown to enable the exceptional real-time hybrid test results to be achieved.
SummaryIn real‐time hybrid simulations (RTHS) that utilize explicit integration algorithms, the inherent damping in the analytical substructure is generally defined using mass and initial stiffness proportional damping. This type of damping model is known to produce inaccurate results when the structure undergoes significant inelastic deformations. To alleviate the problem, a form of a nonproportional damping model often used in numerical simulations involving implicit integration algorithms can be considered. This type of damping model, however, when used with explicit integration algorithms can require a small time step to achieve the desired accuracy in an RTHS involving a structure with a large number of degrees of freedom. Restrictions on the minimum time step exist in an RTHS that are associated with the computational demand. Integrating the equations of motion for an RTHS with too large of a time step can result in spurious high‐frequency oscillations in the member forces for elements of the structural model that undergo inelastic deformations. The problem is circumvented by introducing the parametrically controllable numerical energy dissipation available in the recently developed unconditionally stable explicit KR‐α method. This paper reviews the formulation of the KR‐α method and presents an efficient implementation for RTHS. Using the method, RTHS of a three‐story 0.6‐scale prototype steel building with nonlinear elastomeric dampers are conducted with a ground motion scaled to the design basis and maximum considered earthquake hazard levels. The results show that controllable numerical energy dissipation can significantly eliminate spurious participation of higher modes and produce exceptional RTHS results. Copyright © 2014 John Wiley & Sons, Ltd.
SUMMARYThe pseudodynamic (PSD) test method imposes command displacements to a test structure for a given time step. The measured restoring forces and displaced position achieved in the test structure are then used to integrate the equations of motion to determine the command displacements for the next time step. Multi-directional displacements of the test structure can introduce error in the measured restoring forces and displaced position. The subsequently determined command displacements will not be correct unless the effects of the multi-directional displacements are considered. This paper presents two approaches for correcting kinematic errors in planar multi-directional PSD testing, where the test structure is loaded through a rigid loading block. The first approach, referred to as the incremental kinematic transformation method, employs linear displacement transformations within each time step. The second method, referred to as the total kinematic transformation method, is based on accurate nonlinear displacement transformations. Using three displacement sensors and the trigonometric law of cosines, this second method enables the simultaneous nonlinear equations that express the motion of the loading block to be solved without using iteration. The formulation and example applications for each method are given. Results from numerical simulations and laboratory experiments show that the total transformation method maintains accuracy, while the incremental transformation method may accumulate error if the incremental rotation of the loading block is not small over the time step. A procedure for estimating the incremental error in the incremental kinematic transformation method is presented as a means to predict and possibly control the error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.