Malaria still poses a significant threat in Nigeria despite the various efforts to abate its transmission. Certain environmental factors have been implicated to increase the risk of malaria in Nigeria and other affected countries. The study aimed to evaluate the spatial and temporal association between the incidence of malaria and some environmental risk factors in Nigeria. The study used malaria incidence and environmental risk factors data emanating from 2015 Nigeria Malaria Indicator Survey accessed from the Demographic and Health Survey database. A total of 333 and 326 clusters throughout the country were used for malaria incidence study and environmental variables respectively. The spatial autocorrelation of malaria incidence and hotspot analysis was determined by the Moran’s diagram and local Moran’s I index, respectively. The relationships between the malaria incidence and the ecological predictors of transmission were analysed in all the six geopolitical zones of Nigeria from 2000–2015 using ordinary least square (OLS), spatial lag model (SLM), and spatial error model (SEM). Annual rainfall, precipitation and proximity to water showed significant positive relationship with the incidence rate of malaria in the OLS model (P < 0.01), whereas aridity was negatively related to malaria incidence (P < 0.001) in the same model. The rate of incidence of malaria increased significantly with increase in temperature, aridity, rainfall and proximity to water in the SEM whereas only temperature and proximity to water have significant positive effect on malaria incidence in the SLM. The modelling of the ecological predictors of malaria transmission and spatial maps provided in this study could aid in developing framework to mitigate malaria and identify its hotspots for urgent intervention in the endemic regions.
Cockroaches and houseflies pose significant public health threat owning to their ability to mechanically transmit human intestinal parasites and other disease-causing microorganisms. This study aims at assessing the vectoral capacity of cockroaches and houseflies in the transmission of human intestinal parasites. Intestinal parasite external surface contamination of 130 cockroaches and 150 houseflies caught within dwelling places in Ilishan-Remo town, Ogun State, Nigeria was determined. Cockroaches (six parasite species) were more contaminated than houseflies (four parasite species). The most prevalent parasites were Trichuris trichiura (74.0%) and hookworm (63.0%) in houseflies and cockroaches respectively. There were significant differences in the prevalence of hookworm, T. trichiura and Taenia spp. isolated from cockroaches and houseflies (P < 0.05). There is high contamination of human intestinal parasites in cockroaches and houseflies in human dwelling places in the study area, thus they have the ability to transmit these parasites to unkempt food materials.
Myocardial infarction (MI) is the most prevalent cause of cardiovascular death. A possible way of preventing MI maybe by dietary supplements. The present study was thus designed to ascertain the cardio-protective effect of a formulated curcumin and nisin based poly lactic acid nanoparticle (CurNisNp) on isoproterenol (ISO) induced MI in guinea pigs. Animals were pretreated for 7 days as follows; Groups A and B animals were given 0.5 mL/kg of normal saline, group C metoprolol (2 mg/kg), groups D and E CurNisNp 10 and 21 mg/kg respectively (n = 5). MI was induced on the 7th day in groups B-E animals. On the 9th day electrocardiogram (ECG) was recorded, blood samples and tissue biopsies were collected for analyses. Toxicity studies on CurNisNp were carried out. MI induction caused atrial fibrillation which was prevented by pretreatment of metoprolol or CurNisNp. MI induction was also associated with increased expressions of cardiac troponin I (CTnI) and kidney injury molecule-1 (KIM-1) which were significantly reduced in guinea pig’s pretreated with metoprolol or CurNisNp (P < 0.05). The LC50 of CurNisNp was 3258.2 μg/mL. This study demonstrated that the formulated curcumin-nisin based nanoparticle confers a significant level of cardio-protection in the guinea pig and is nontoxic.
BackgroundSnail intermediate host control is a widely canvassed strategy for schistosomiasis control in endemic countries. While there have been increasing studies on the search for potent molluscicides in the past years, the use of nanoparticulate agents as molluscicides is yet to gain wide attention. The aim of this study was to assess the molluscicidal potential of curcumin-nisin poly lactic acid (PLA) entrapped nanoparticle (CurNisNp) against Biomphalaria pfeifferi, a snail intermediate host for Schistosoma mansoni.Methodology/Principal findingsCurNisNp formulated by double emulsion method was tested against the young adults, < 1 week, 1-2-week old juveniles, 1 day (blastula) and 7 day-old (hippo-stage) egg masses of B. pfeifferi. Mortality in the different stages was determined after 96-h of exposure at varying concentrations (350, 175, 87.5, 43.75 and 21.88 ppm). The sub-lethal effects of CurNisNp on the hatchability of the 7-day-old egg masses and egg laying capacity of the young adult snails were determined. The CurNisNp diameter, polydispersity index (PDI), zeta potential and drug entrapment efficiency were 284.0 ± 17.9 nm, 0.166 ± 0.03, -16.6 ± 2.45 mV and 35.0% respectively. The < 1 week old juveniles and the 1-day-old egg stage (blastula) of B. pfeifferi with LC50 277.9 ppm and 4279.5 ppm were the most susceptible and resistant stages to the drug respectively. CurNisNp was also observed to cause significant reductions (P<0.05) in egg hatchability and egg laying capacity with strong negative correlation between egg laying capacity and concentration (r = -0.928; P<0.05).Conclusion/SignificanceThis study showed that CurNisNp has molluscicidal activities on different developmental stages of B. pfeifferi. It is therefore recommended that the formulation be more optimised to give a nanoparticle with a narrow range monodispersed PDI for better drug distribution and eventual greater molluscicidal activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.