Population density has recently been suggested to be an important factor influencing metabolic rates and to represent an important 'third axis' explaining variation beyond that explained by body mass and temperature. In situations where population density influences food consumption, the immediate effect on metabolism acting through specific dynamic action (SDA), and downregulation due to fasting over longer periods, is well understood. However, according to a recent review, previous studies suggest a more general effect of population density per se, even in the absence of such effects. It has been hypothesized that this results from animals performing anticipatory responses (i.e. reduced activity) to expected declines in food availability. Here, we test the generality of this finding by measuring density effects on metabolic rates in 10 clones from two different species of the zooplankton Daphnia (Daphnia pulex Leydig and D. magna Straus). Using fluorescence-based respirometry, we obtain high-precision measures of metabolism. We also identify additional studies on this topic that were not included in the previous review, compare the results and evaluate the potential for measurement bias in all previous studies. We demonstrate significant variation in mass-specific metabolism among clones within both species. However, we find no evidence for a negative relationship between population density and mass-specific metabolism. The previously reported pattern also disappeared when we extended the set of studies analysed. We discuss potential reasons for the discrepancy among studies, including two main sources of potential bias (microbial respiration and declining oxygen consumption due to reduced oxygen availability). Only one of the previous studies gives sufficient information to conclude the absence of such biases, and consistent with our results, no effect of density on metabolism was found. We conclude that population density per se does not have a general effect on mass-specific metabolic rate.
Environmental change may cause phenotypic changes that are inherited across generations through transgenerational plasticity (TGP). If TGP is adaptive, offspring fitness increases with an increasing match between parent and offspring environment. Here we test for adaptive TGP in somatic growth and metabolic rate in response to temperature in the clonal zooplankton Daphnia pulex. Animals of the first focal generation experienced thermal transgenerational 'mismatch' ( parental and offspring temperatures differed), whereas conditions of the next two generations matched the (grand)maternal thermal conditions. Adjustments of metabolic rate occurred during the lifetime of the first generation (i.e. within-generation plasticity). However, no further change was observed during the subsequent two generations, as would be expected under TGP. Furthermore, we observed no tendency for increased juvenile somatic growth (a trait highly correlated with fitness in Daphnia) over the three generations when reared at new temperatures. These results are inconsistent with existing studies of thermal TGP, and we describe how previous experimental designs may have confounded TGP with within-generation plasticity and selective mortality. We suggest that the current evidence for thermal TGP is weak. To increase our understanding of the ecological and evolutionary role of TGP, future studies should more carefully identify possible confounding factors.
Aquatic ectotherms face a challenge of obtaining sufficient oxygen, and it is commonly claimed that this challenge increases with increasing environmental temperature, causing concerns about the fate of aquatic ecosystems under climate change. However, the oxygen challenge hypothesis often ignores the effect of known phenotypic plastic responses. These can occur on either a within‐ or multigenerational scale, where multiple reactions act in concert to increase oxygen supply in response to increased temperature in a wide range of traits (molecular, egg content, behavioural, cell structure, morphological). Here, we combine a novel modelling approach with empirical measurements that enable quantification of how both the oxygen supply (maximum oxygen diffusion rate) and demand (metabolic rate) are affected by temperature while allowing for phenotypic plasticity. We exposed the aquatic ectotherm Daphnia magna to a range of temperatures (17–28°C) over several asexual generations and confirm that phenotypic plasticity contributes to an increased ability to obtain oxygen on the whole‐organism level at high temperatures. This response is strongest within the highest temperature range (22–28°C), where the change in oxygen challenge is expected to be most pronounced. However, the observed thermal plasticity in oxygen supply failed to compensate for the increased demand. Thus, we provide empirical evidence that the oxygen challenge in aquatic ectotherms increases with increasing temperature, even in the presence of phenotypic plasticity in oxygen supply. A free Plain Language Summary can be found within the Supporting Information of this article.
Diversified bet‐hedging (DBH) by production of within‐genotype phenotypic variance may evolve to maximize fitness in stochastic environments. Bet‐hedging is generally associated with parental effects, but phenotypic variation may also develop throughout life via developmental instability (DI). This opens for the possibility of a within‐generation mechanism creating DBH during the lifetime of individuals. If so, DI could in fact be a plastic trait itself; if a fluctuating environment indicates uncertainty about future conditions, sensing such fluctuations could trigger DI as a DBH response. However, this possibility has received little empirical attention. Here, we test whether fluctuating environments may elicit such a response in the clonally reproducing crustacean Daphnia magna. Specifically, we exposed genetically identical individuals to two environments of different thermal stability (stable vs. pronounced daily realistic temperature fluctuations) and tested for effects on DI in body mass and metabolic rate shortly before maturation. Furthermore, we also estimated the genetic variation in DI. Interestingly, fluctuating temperatures did not affect body mass, but metabolic rate decreased. We found no evidence for plasticity in DI in response to environmental fluctuations. The lack of plasticity was common to all genotypes, and for both traits studied. However, we found considerable evolvability for DI, which implies a general evolutionary potential for DBH under selection for increased phenotypic variance.
In ectotherms, adult body size commonly declines with increasing environmental temperature, a pattern known as the temperature-size rule. One influential hypothesis explaining this observation is that the challenge of obtaining sufficient oxygen to support metabolism becomes greater with increasing body size, and more so at high temperatures. Yet, previous models based on this hypothesis do not account for phenotypic plasticity in the physiology of organisms that counteracts oxygen limitation at high temperature. Here, we model the predicted strength of the temperature-size response using estimates of how both the oxygen supply and demand is affected by temperature when allowing for phenotypic plasticity in the aquatic ectotherm Daphnia magna. Our predictions remain highly inconsistent with empirical temperature-size responses, with the prior being close to one order of magnitude stronger than the latter. These results fail to provide quantitative support for the hypothesis that oxygen limitation drives temperature-size clines in aquatic ectotherms. Future studies into the role of oxygen limitation should address how the strength of the temperature-size response may be shaped by evolution under fluctuating temperature regimes. Finally, our results caution against applying deterministic models based on the oxygen limitation hypothesis when predicting future changes in ectotherm size distributions under climate change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.