Although the world output of zirconium has been declining, increasing zirconium consumption cannot compete with this situation. For this reason, removal and recovery of zirconium become important. This work is focused on the removal of Zirconium (as ZrO22+) ions from an aqueous solution using polymer-enhanced ultrafiltration (PEUF) techniques with water-soluble Poly (sodium-p-styrene sulfonate, SSS) sorbent. The negatively charged sulfonic acid groups in the polymer interact with positively charged ZrO22+ cation thereby enabling the efficient removal of ZrO22+through ultrafiltration. The effect of polymer: zirconium mole ratio, initial solution pH, and the presence of interfering ions on the removal of zirconium was investigated. The obtained results demonstrated that ZrO22+ can be removed from the aqueous solution by the PEUF technique with more than 99% efficiency at pH ≥ 2 using polymer: Zr molar ratio of 5:1. The presence of interfering ions did not affect the percent removal of ZrO22+.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.