Günümüzde teknolojinin hızla gelişmesi ile birlikte yapay zekâ teknikleri de yaygın bir şekilde kullanılmaktadır. Yapay zekâ yöntemleri mühendislik uygulamaları, eğitim, savunma sanayi gibi birçok alanda sıklıkla kullanılmaktadır. Yapay zekânın önemli kullanım alanlarından birisi de sağlık sektörüdür. Sağlık sektörü alanında gerçekleştirilen bu çalışmada açık erişimli bir internet sitesinden (kaggle) elde edilen veri seti kullanılmıştır. Veri seti üzerinde yapay zekâ yöntemleri kullanılarak kalp hastalığının tespiti gerçekleştirilmiştir. Çalışma kapsamında, Random Forest yöntemi ve Parçacık Sürü Optimizasyonu kullanılarak veri setinde yer alan 303 bireyin kalp hastası olup, olmadığına dair sınıflandırma işlemi gerçekleştirilmiştir. Parçacık Sürü Optimizasyonu yöntemi kullanılarak özellik seçimi yapılmış olup rastgele orman yapay zekâ algoritması ile veri seti eğitilmiştir. Rastgele Orman sınıflandırma modeli; doğruluk, özgüllük, duyarlılık, kesinlik, F-ölçüsü, ROC eğrisi ölçütlerinden oluşan performans değerlendirme kriterlerine göre başarı oranı incelenmiştir. Değerlendirme sonucunda Rastgele Orman sınıflandırmanın %86.88 doğruluk, %85.71 özgüllük, %87.87 duyarlılık, %87.87 kesinlik ve %87.87 F-ölçüsü değeri ile başarılı tahmin gerçekleştirdiği belirlenmiştir.
Çalışmada 3D baskı teknolojilerinden Fused Deposition Modeling (FDM) yazıcı kullanılarak robotik kol üretilmiştir. Üretilen robot kolun görüntü işleme teknikleri ve makine öğrenme algoritmaları kullanarak dokunsal algılama ve hareket planlaması araştırılmıştır. Bu çalışmanın amacı, robotik kolun kontrolsüz kuvvet uygulamasını engellemek ve dokunsal kavrama sorunlarını çözmek için görüntü işleme teknikleri ve derin öğrenme algoritmaları kullanılarak yenilikçi yaklaşımların araştırılması ve uygulanmasıdır. Bu çalışmada, CAD programı ile tasarımı gerçekleştirilmiş parçaların FDM tipi üç boyutlu yazıcı kullanılarak katı modelleri alınmış ve montaj için uygun hale getirilmiştir. Montajı tamamlanan robotik elin kontrol sistemi ise temel olarak Raspberry Pi kontrol kartı, servo motorlar, basınç sesörleri ve kameradan oluşmaktadır. Robotik kola ait her parmak ucuna yerleştirilen basınç sensörleri ile ürünün sertliği ölçülerek dokunsal algılama işlemi gerçekleştirilmiştir. Raspberrry pi kontrol kartı kullanılarak sensörlerden alınan veriler işlenmekte ve servo motorlara uygun hareket ve kavrama basınç bilgisi gönderilmektedir. Kamera kullanılarak elde edilen insan elinin olası hareketleri ile robotik kol için referans bir veri seti hazırlanmıştır. Veri setine ait görüntüler üzerinde Gaussian filtreleme yöntemi kullanılarak görüntü işleme sağlanmıştır. Bununla birlikte veri seti üzerinde makine öğrenme algoritmaları kullanarak robotik kolun hareket açısal konumu optimize edilmiş ve HitNet, CNN, Kapsül Ağları ve Naive Bayes derin öğrenme modelleri kullanılarak robot kolun hareket planlanması %90 doğruluk oranı ile sınıflandırılmıştır. Performans değerlendirme kriterlerine göre başarıları kıyaslanan derin öğrenme modelleri arasında, robotik kolun hareket planlaması için; HitNET algoritması ile 97.23%, CNN ile 97.48%, Capsnet algoritması ile %98,58 ve Naive Bayes modeli ile %98.61 doğruluk oranı elde edilmiştir. Performans değerlendirme kriterleri sonucunda; Naive Bayes modelinin %98.61 doğruluk, %98.63 özgüllük, %98.65 duyarlılık, 1.39 hata oranı ve %68.64 F-ölçüsü değeri ile diğer modellere göre daha başarılı sonuç verdiği gözlemlenmiştir.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.