Cisplatin (CP), which is a conventional cancer chemotherapeutic drug, induces apoptosis by modulating a diverse array of gene regulatory mechanisms. However, cisplatin-mediated changes in the m6A methylome are unknown. We employed an m6A miCLIP-seq approach to investigate the effect of m6A methylation marks under cisplatin-mediated apoptotic conditions on HeLa cells. Our high-resolution approach revealed numerous m6A marks on 972 target mRNAs with an enrichment on 132 apoptotic mRNAs. We tracked the fate of differentially methylated candidate mRNAs under METTL3 knockdown and cisplatin treatment conditions. Polysome profile analyses revealed perturbations in the translational efficiency of PMAIP1 and PHLDA1 transcripts. Congruently, PMAIP1 amounts were dependent on METTL3. Additionally, cisplatin-mediated apoptosis was sensitized by METTL3 knockdown. These results suggest that apoptotic pathways are modulated by m6A methylation events and that the METTL3–PMAIP1 axis modulates cisplatin-mediated apoptosis in HeLa cells.
Novel bis-lanthanide Lu(iii) and Eu(iii) phthalocyanine complexes have been designed/synthesized and tested their photodynamic efficacy for A549 and BEAS-2B cells in vitro conditions as candidate photosensitizers in PDT.
This letter describes formation of single chain cationic polymer dots (Pdots) made of poly [1,4-dimethyl-1-(3-((2,4,5-trimethylthiophen-3yl)oxy)propyl)piperazin-1-ium bromide] conjugated polyelectrolyte (CPE). The single chain Pdot formation relies on a simple process which is a rapid nanophase separation between CPE solution of ethylene glycol and water. Pdots show narrow monodisperse size distribution with a 3.6 nm in diameter exhibiting high brightness and excellent colloidal and optical stability. It has been demonstrated that photoluminescent Pdots provide selective nuclear translocation to hepatocellular carcinoma cells as compared to healthy liver cells. The Pdot labeling effectively discriminates cancer cells in the coculture media. Pdots hold great promise as a luminescent probe to diagnose cancer cells in histology and may guide surgeons during operations to precisely separate out cancerous tissue due to augmented fluorescence brightness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.