Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called ''classical'' catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of ''nonclassical'' serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/ His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
Aza-peptide Michael acceptors are a new class of irreversible inhibitors that are highly potent and specific for clan CD cysteine proteases. The aza-Asp derivatives were specific for caspases, while aza-Asn derivatives were effective legumain inhibitors. Aza-Lys and aza-Orn derivatives were potent inhibitors of gingipain K and clostripain. Aza-peptide Michael acceptors showed no cross reactivity toward papain, cathepsin B, and calpain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.