The basic machinery for the translocation of proteins into or across membranes is remarkably conserved from Escherichia coli to humans. In eukaryotes, proteins are inserted into the endoplasmic reticulum using the signal recognition particle (SRP) and the SRP receptor, as well as the integral membrane Sec61 trimeric complex (composed of alpha, beta and gamma subunits). In bacteria, most proteins are inserted by a related pathway that includes the SRP homologue Ffh, the SRP receptor FtsY, and the SecYEG trimeric complex, where Y and E are related to the Sec61 alpha and gamma subunits, respectively. Proteins in bacteria that exhibit no dependence on the Sec translocase were previously thought to insert into the membrane directly without the aid of a protein machinery. Here we show that membrane insertion of two Sec-independent proteins requires YidC. YidC is essential for E. coli viability and homologues are present in mitochondria and chloroplasts. Depletion of YidC also interferes with insertion of Sec-dependent membrane proteins, but it has only a minor effect on the export of secretory proteins. These results provide evidence for an additional component of the translocation machinery that is specialized for the integration of membrane proteins.
No abstract
The signal peptidase (SPase) from Escherichia coli is a membrane-bound endopeptidase with two amino-terminal transmembrane segments and a carboxy-terminal catalytic region which resides in the periplasmic space. SPase functions to release proteins that have been translocated into the inner membrane from the cell interior, by cleaving off their signal peptides. We report here the X-ray crystal structure of a catalytically active soluble fragment of E. coli SPase (SPase delta2-75). We have determined this structure at 1.9 A resolution in a complex with an inhibitor, a beta-lactam (5S,6S penem), which is covalently bound as an acyl-enzyme intermediate to the gamma-oxygen of a serine residue at position 90, demonstrating that this residue acts as the nucleophile in the hydrolytic mechanism of signal-peptide cleavage. The structure is consistent with the use by SPase of Lys 145 as a general base in the activation of the nucleophilic Ser90, explains the specificity requirement at the signal-peptide cleavage site, and reveals a large exposed hydrophobic surface which could be a site for an intimate association with the membrane. As enzymes that are essential for cell viability, bacterial SPases present a feasible antibacterial target: our determination of the SPase structure therefore provides a template for the rational design of antibiotic compounds.
Serine proteases comprise nearly one-third of all known proteases identified to date and play crucial roles in a wide variety of cellular as well as extracellular functions, including the process of blood clotting, protein digestion, cell signaling, inflammation, and protein processing. Their hallmark is that they contain the so-called ''classical'' catalytic Ser/His/Asp triad. Although the classical serine proteases are the most widespread in nature, there exist a variety of ''nonclassical'' serine proteases where variations to the catalytic triad are observed. Such variations include the triads Ser/His/Glu, Ser/ His/His, and Ser/Glu/Asp, and include the dyads Ser/Lys and Ser/His. Other variations are seen with certain serine and threonine peptidases of the Ntn hydrolase superfamily that carry out catalysis with a single active site residue. This work discusses the structure and function of these novel serine proteases and threonine proteases and how their catalytic machinery differs from the prototypic serine protease class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.