We report on the material, electrical, and optical properties of metal–semiconductor–metal ultraviolet photodetectors fabricated on single-crystal GaN, with active layers of 1.5 and 4.0 μm thickness. We have modeled current transport in the 1.5 μm devices using thermionic field emission theory, and in the 4.0 μm devices using thermionic emission theory. We have obtained a good fit to the experimental data. Upon repeated field stressing of the 1.5 μm devices, there is a degradation in the current–voltage (I–V) characteristics that is trap related. We hypothesize that traps in the GaN are related to a combination of surface defects (possibly threading dislocations), and deep-level bulk states that are within a tunneling distance of the interface. A simple qualitative model is presented based on experimental results. For devices fabricated on wafers with very low background free electron concentrations, there is a characteristic “punch-through” voltage, which we attribute to the interaction of the depletion region with the underlying low-temperature buffer layer. We also report GaN metal–semiconductor–metal photodetectors with high quantum efficiencies (∼50%) in the absence of internal gain. These photodetectors have a flat responsivity above the band gap (measured at ∼0.15 A/W) with a sharp, visible-blind cutoff at the band edge. There is no discernible responsivity for photons below the band-gap energy. We also obtained record low dark current of ∼800 fA at −10 V reverse bias. The dark current and ultraviolet photoresponse I–V curves are very flat out to VR>−25 V, and do not show evidence of trap-related degradation, or punch-through effects.
Articles you may be interested inPerformance improvement of GaN-based ultraviolet metal-semiconductor-metal photodetectors using chlorination surface treatment J. Vac. Sci. Technol. B 30, 031211 (2012); 10.1116/1.4711215 Effect of asymmetric Schottky barrier on GaN-based metal-semiconductor-metal ultraviolet detector Appl. Phys. Lett. 99, 261102 (2011); 10.1063/1.3672030 Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors Appl. Phys. Lett. 98, 011108 (2011); 10.1063/1.3536480 GaN metal-semiconductor-metal ultraviolet photodetector with IrO 2 Schottky contact Appl. Phys. Lett. 81, 4655 (2002); 10.1063/1.1524035High-speed, low-noise metal-semiconductor-metal ultraviolet photodetectors based on GaN
Articles you may be interested inComparison of hole traps in n-GaN grown by hydride vapor phase epitaxy, metal organic chemical vapor deposition, and epitaxial lateral overgrowth
We report a very low dark current (∼57 pA at 10 V reverse bias) metal–semiconductor–metal photodetectors fabricated on GaN epitaxial layers grown by low-pressure metalorganic chemical vapor deposition. The photodetectors exhibit the typical sharp band-edge cutoff, with good responsivity. There is indication of a photoconductive gain mechanism. We also performed a Medici simulation to establish an effective area for current density calculations.
For the first time, embedded Si:C (eSi:C) was demonstrated to be a superior nMOSFET stressor compared to SMT or tensile liner (TL) stressors. eSi:C nMOSFET showed higher channel mobility and drive current over our best poly-gate 45nm-node nMOSFET with SMT and tensile liner stressors. In addition, eSi:C showed better scalability than SMT plus tensile liner stressors from 380nm to 190nm poly-pitches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.