Abstract.A centrally symmetric plane curve has a point called it's centre of symmetry. We define (following Janeczko) a set which measures the central symmetry of an arbitrary strictly convex plane curve, or surface in R 3 . We investigate some of it's properties, and begin the study of non-convex cases.
The affine distance symmetry set (ADSS) of a plane curve is an affinely invariant analogue of the euclidean symmetry set (SS) [7], [6]. We list all transitions on the ADSS for generic 1-parameter families of plane curves. We show that for generic convex curves the possible transitions coincide with those for the SS but for generic non-convex curves, further transitions occur which are generic in 1-parameter families of bifurcation sets, but are impossible in the euclidean case. For a nonconvex curve there are also additional local forms and transitions which do not fit into the generic structure of bifurcation sets at all. We give computational and experimental details of these.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.