Computational fluid dynamics (CFD) simulation of Magnus Lift -Driven wind turbines provide different results depending on the method of wind power capture and the nature of the turbine. The Magnus Lift -driven wind turbines, which would normally have cylindrical blades rotating either about a vertical or horizontal axis, reveals interesting CFD results. For instance, the blade aspect ratio is critical in determining the performance of the Magnus WT. The power coefficient generated by Magnus WT at low tip-speed ratio clearly justifies that the turbine would perform optimally in urban environment. This review paper focuses on these Magnus Lift -driven wind turbines, by analyzing the research results in the literature review section. The results section contains the simulation outcome based on various CFD approaches. The conclusion cites the gaps in research. More importantly, the paper reviews the factors affecting the efficiency of the Magnus wind turbine such as drag coefficient, surface roughness effect, and wind velocity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.