Background
Hydroxychloroquine (HCQ) blood levels are used to monitor efficacy, safety, and patient adherence during treatment. Oral fluid has emerged as an alternative noninvasive, easily accessible, and low-complexity matrix for drug monitoring. However, there is no analytical method to measure HCQ in oral fluid. Therefore, we developed and validated an ultra-high-performance liquid chromatography-tandem mass (UHPLC-MS/MS) method for the measurement of HCQ and its main metabolites in oral fluid and compared to whole blood.
Methods
Ten microliters of matrices were used for sample preparation by protein precipitation with acetonitrile followed by online solid phase extraction. The validation process included assessment of lower limit of quantification, linearity, precision, recovery, matrix effect, interferences assessment, carryover, and sample dilution validation.
Results
The lower limit of quantification was 50 ng/mL for HCQ and metabolites in both oral fluid and whole blood. The calibration curve was linear from 50 to 2000 ng/mL (r2 = 0.999). The coefficient of variation for precision assay was 1.2% to 9.7% for intraday and 1.1% to 14.2% for interday for both HCQ and metabolites in oral fluid and whole blood samples at 150, 750, and 1250 ng/mL. The recovery was 85.3% to 118.5% for 150, 750, and 1250 ng/mL of HCQ and metabolites in both oral fluid and whole blood. Dilution factor up to 5-fold was validated for concentrations higher than the upper limit of quantification.
Conclusions
The validated method is specific, precise, and accurate to determine the analytical range for therapeutic monitoring of HCQ and its main metabolites in oral fluid and blood.
The history of muscle biopsy dates back to 1860, when Duchenne first performed a biopsy on a patient with symptoms of myopathy (1) . Since then, the basic and clinical science of muscle and muscle disease has gone through three stages of development: the classical period, the modern stage and the molecular era.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.