The cortex is a complex system, characterized by its dynamics and architecture, which underlie many functions such as action, perception, learning, language, and cognition. Its structural architecture has been studied for more than a hundred years; however, its dynamics have been addressed much less thoroughly. In this paper, we review and integrate, in a unifying framework, a variety of computational approaches that have been used to characterize the dynamics of the cortex, as evidenced at different levels of measurement. Computational models at different space–time scales help us understand the fundamental mechanisms that underpin neural processes and relate these processes to neuroscience data. Modeling at the single neuron level is necessary because this is the level at which information is exchanged between the computing elements of the brain; the neurons. Mesoscopic models tell us how neural elements interact to yield emergent behavior at the level of microcolumns and cortical columns. Macroscopic models can inform us about whole brain dynamics and interactions between large-scale neural systems such as cortical regions, the thalamus, and brain stem. Each level of description relates uniquely to neuroscience data, from single-unit recordings, through local field potentials to functional magnetic resonance imaging (fMRI), electroencephalogram (EEG), and magnetoencephalogram (MEG). Models of the cortex can establish which types of large-scale neuronal networks can perform computations and characterize their emergent properties. Mean-field and related formulations of dynamics also play an essential and complementary role as forward models that can be inverted given empirical data. This makes dynamic models critical in integrating theory and experiments. We argue that elaborating principled and informed models is a prerequisite for grounding empirical neuroscience in a cogent theoretical framework, commensurate with the achievements in the physical sciences.
Links between electroencephalograms (EEGs) and underlying aspects of neurophysiology and anatomy are poorly understood. Here a nonlinear continuum model of large-scale brain electrical activity is used to analyze arousal states and their stability and nonlinear dynamics for physiologically realistic parameters. A simple ordered arousal sequence in a reduced parameter space is inferred and found to be consistent with experimentally determined parameters of waking states. Instabilities arise at spectral peaks of the major clinically observed EEG rhythms-mainly slow wave, delta, theta, alpha, and sleep spindle-with each instability zone lying near its most common experimental precursor arousal states in the reduced space. Theta, alpha, and spindle instabilities evolve toward low-dimensional nonlinear limit cycles that correspond closely to EEGs of petit mal seizures for theta instability, and grand mal seizures for the other types. Nonlinear stimulus-induced entrainment and seizures are also seen, EEG spectra and potentials evoked by stimuli are reproduced, and numerous other points of experimental agreement are found. Inverse modeling enables physiological parameters underlying observed EEGs to be determined by a new, noninvasive route. This model thus provides a single, powerful framework for quantitative understanding of a wide variety of brain phenomena.
The aim of this paper is to explain critical features of the human primary generalized epilepsies by investigating the dynamical bifurcations of a nonlinear model of the brain's mean field dynamics. The model treats the cortex as a medium for the propagation of waves of electrical activity, incorporating key physiological processes such as propagation delays, membrane physiology, and corticothalamic feedback. Previous analyses have demonstrated its descriptive validity in a wide range of healthy states and yielded specific predictions with regards to seizure phenomena. We show that mapping the structure of the nonlinear bifurcation set predicts a number of crucial dynamic processes, including the onset of periodic and chaotic dynamics as well as multistability. Quantitative study of electrophysiological data supports the validity of these predictions. Hence, we argue that the core electrophysiological and cognitive differences between tonic-clonic and absence seizures are predicted and interrelated by the global bifurcation diagram of the model's dynamics. The present study is the first to present a unifying explanation of these generalized seizures using the bifurcation analysis of a dynamical model of the brain.
The classical model of blood oxygen level-dependent (BOLD) responses by Buxton et al. [Buxton, R.B., Wong, E.C., Frank, L.R., 1998. Dynamics of blood flow and oxygenation changes during brain activation: the Balloon model. Magn. Reson. Med. 39, 855–864] has been very important in providing a biophysically plausible framework for explaining different aspects of hemodynamic responses. It also plays an important role in the hemodynamic forward model for dynamic causal modeling (DCM) of fMRI data. A recent study by Obata et al. [Obata, T., Liu, T.T., Miller, K.L., Luh, W.M., Wong, E.C., Frank, L.R., Buxton, R.B., 2004. Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the Balloon model to the interpretation of BOLD transients. NeuroImage 21, 144–153] linearized the BOLD signal equation and suggested a revised form for the model coefficients. In this paper, we show that the classical and revised models are special cases of a generalized model. The BOLD signal equation of this generalized model can be reduced to that of the classical Buxton model by simplifying the coefficients or can be linearized to give the Obata model. Given the importance of hemodynamic models for investigating BOLD responses and analyses of effective connectivity with DCM, the question arises which formulation is the best model for empirically measured BOLD responses. In this article, we address this question by embedding different variants of the BOLD signal equation in a well-established DCM of functional interactions among visual areas. This allows us to compare the ensuing models using Bayesian model selection. Our model comparison approach had a factorial structure, comparing eight different hemodynamic models based on (i) classical vs. revised forms for the coefficients, (ii) linear vs. non-linear output equations, and (iii) fixed vs. free parameters, ε, for region-specific ratios of intra- and extravascular signals. Using fMRI data from a group of twelve subjects, we demonstrate that the best model is a non-linear model with a revised form for the coefficients, in which ε is treated as a free parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.