Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing, due to Si interstitials being emitted from the region of the implant damage. The structural source of these interstitials has not previously been identified. Quantitative transmission electron microscopy measurements of extended defects are used to demonstrate that TED is caused by the emission of interstitials from specific defects. The defects are rodlike defects running along 〈110〉 directions, which consist of interstitials precipitating on {311} planes as a single monolayer of hexagonal Si. We correlate the evaporation of {311} defects during annealing at 670 and 815 °C with the length of the diffusion transient, and demonstrate a link between the number of interstitials emitted by the defects, and the flux of interstitials driving TED. Thus not only are {311} defects contributing to the interstitial flux, but the contribution attributable to {311} defect evaporation is sufficient to explain the whole of the observed transient. The {311} defects are the source of the interstitials.
The transient supersaturation in a system undergoing Ostwald ripening is related to the cluster formation energy E fc as a function of cluster size n. We use this relation to study the energetics of self-interstitial clusters in Si. Measurements of transient enhanced diffusion of B in Si-implanted Si are used to determine S͑t͒, and inverse modeling is used to derive E fc ͑n͒. For clusters with n . 15, E fc ഠ 0.8 eV, close to the fault energy of ͕113͖ defects. For clusters with n , 10, E fc is typically 0.5 eV higher, but stabler clusters exist at n ഠ 4 (E fc ഠ 1.0 eV) and n ഠ 8 (E fc ഠ 0.6 eV). [S0031-9007(99)09311-4]
Copper centers in copper-diffused n-type silicon measured by photoluminescence and deep-level transient spectroscopy Appl. Phys. Lett. 101, 042113 (2012) Bonding and diffusion of nitrogen in the InSbN alloys fabricated by two-step ion implantation Appl. Phys. Lett. 101, 021905 (2012) Shift of Ag diffusion profiles in CdTe by metal/semiconductor interfaces Appl. Phys. Lett. 100, 171915 (2012) Diffusion of co-implanted carbon and boron in silicon and its effect on excess self-interstitials Implanted B and P dopants in Si exhibit transient enhanced diffusion ͑TED͒ during annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, transmission electron microscopy measurements of implantation damage were combined with B diffusion experiments using doping marker structures grown by molecular-beam epitaxy ͑MBE͒. Damage from nonamorphizing Si implants at doses ranging from 5ϫ10 12 to 1ϫ10 14 /cm 2 evolves into a distribution of ͕311͖ interstitial agglomerates during the initial annealing stages at 670-815°C. The excess interstitial concentration contained in these defects roughly equals the implanted ion dose, an observation that is corroborated by atomistic Monte Carlo simulations of implantation and annealing processes. The injection of interstitials from the damage region involves the dissolution of ͕311͖ defects during Ostwald ripening with an activation energy of 3.8Ϯ0.2 eV. The excess interstitials drive substitutional B into electrically inactive, metastable clusters of presumably two or three B atoms at concentrations below the solid solubility, thus explaining the generally observed immobile B peak during TED of ion-implanted B. Injected interstitials undergo retarded diffusion in the MBE-grown Si with an effective migration energy of ϳ3.5 eV, which arises from trapping at substitutional C. The concept of trap-limited diffusion provides a stepping stone for understanding the enormous disparity among published values for the interstitial diffusivity in Si. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ϳ10 19 /cm 3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation. The present insights have been implemented into a process simulator, allowing for a significant improvement of the predictive modeling of TED.
On annealing a boron implanted Si sample at ∼800 °C, boron in the tail of the implanted profile diffuses very fast, faster than the normal thermal diffusion by a factor 100 or more. After annealing for a sufficiently long time, the enhanced diffusion saturates. The enhanced diffusion is temporary, on annealing the sample a second time after saturation, enhanced diffusion does not occur. It is therefore designated as transient enhanced diffusion (TED). The high concentration peak of the implanted boron profile, which is electrically inactive, does not diffuse. TED makes it difficult to fabricate modern Si based devices, in particular TED produces the parasitic barriers which degrade the performance of the SiGe heterostructure bipolar transistors and TED can limit the fabrication of shallow junctions required for sub-100 nm complementary metal–oxide–semiconductor technology. The mechanisms of TED have been elucidated recently. A Si interstitial “kicks out” the substitutional boron atom to an interstitial position where it can diffuse easily. Alternatively the interstitials and boron atoms form highly mobile pairs. In both cases Si interstitials are required for the diffusion of boron. Therefore the enhanced boron diffusivity is proportional to the concentration of the excess Si interstitials. The interstitials are injected during implantation with Si or dopant ions. The interstitials are also injected during oxidation of the Si surface. Therefore the diffusivity increases temporarily in both cases. Even at relatively low annealing temperatures (∼800 °C) the mobility of the interstitials is high. The TED at this temperature lasts for more than 1 h. This large TED time can be explained by the presence of interstitial clusters and interstitial–boron clusters. The interstitial clusters are the {311} extended defects and dislocation loops. The precise structure of interstitial–boron clusters is not yet known though several models have been proposed. The clusters are the reservoirs of the interstitials. When the supersaturation of interstitials becomes low, the clusters dissolve and emit interstitials. The interstitials emitted from the clusters sustain the TED. Many groups have suggested that the rate of emission of interstitials is determined by Ostwald ripening of the clusters. However, recently TED evolution has also been explained without invoking Ostwald ripening of the {311} defects. The evidence of Ostwald ripening of dislocation loops is more direct. In this case the Ostwald ripening has been confirmed by the measurements of the size distributions of the dislocation loops at different times and temperatures of annealing. At higher temperatures the extended clusters are not stable and coupling between the interstitials and boron atoms is reduced. Therefore at high temperatures TED lasts only for a short time. At high temperatures the displacement during TED is also small. This suggests that if rapid thermal annealing with high ramp rates is used, TED should be suppressed. Currently high ramp rates, 300–400 °C/s are being tried to suppress TED.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.