This paper presents a device matching study of a commercial 40-nm bulk CMOS technology operated at cryogenic temperatures. Transistor pairs and linear arrays, optimized for device matching, were characterized over the temperature range from 300 K down to 4.2 K. The device parameters relevant for mismatch, i.e., the threshold voltage and the current factor, were extracted, from which the change in both absolute value and variability as a function of temperature and device size were investigated. It is shown that the Pelgrom scaling law is valid also at 4.2 K and that the simplified Croon model is able to accurately predict drain-current mismatch from moderate to strong inversion over the entire temperature range. Additionally, the characterization of linear device arrays shows exacerbated edge-effects at extremely low temperatures, thus requiring the addition of dummy devices at the array boundary. The result of this study is the first model capable of predicting mismatch over a wide range of operating regions and temperatures.
This work presents a self-heating study of a 40nm bulk-CMOS technology in the ambient temperature range from 300 K down to 4.2 K. A custom test chip was designed and fabricated for measuring both the temperature rise in the MOSFET channel and in the surrounding silicon substrate, using the gate resistance and silicon diodes as sensors, respectively. Since self-heating depends on factors such as device geometry and power density, the test structure characterized in this work was specifically designed to resemble actual devices used in cryogenic qubit control ICs. Severe self-heating was observed at deep-cryogenic ambient temperatures, resulting in a channel temperature rise exceeding 50 K and having an impact detectable at a distance of up to 30 µm from the device. By extracting the thermal resistance from measured data at different temperatures, it was shown that a simple model is able to accurately predict channel temperatures over the full ambient temperature range from deep-cryogenic to room temperature. The results and modeling presented in this work contribute towards the full selfheating-aware IC design-flow required for the reliable design and operation of cryo-CMOS circuits.
Cryogenic device models are essential for the reliable design of the cryo-CMOS electronic interface necessary to build future large-scale quantum computers. This paper reports the characterization of the drain-current mismatch of NMOS and PMOS devices fabricated in a commercial 40-nm bulk CMOS process over the temperature range from 4.2 K to 300 K. By analysing the variability of device parameters over a wide range of device area and length, the validity of the Pelgrom area-scaling law is assessed for the threshold voltage, the current factor and the subthreshold swing. The Croon model is employed to model the drain-current mismatch in moderate to strong inversion, while the weak inversion region is modeled by taking the subthreshold slope variability into account. This results in the first model capable of predicting CMOS-device mismatch over all operating regions and in the whole temperature range from 300 K down to 4.2 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.