Collisions in a beam of unidirectional quantized vortex rings of nearly identical radii R in superfluid 4He in the limit of zero temperature (0.05 K) were studied using time-of-flight spectroscopy. Reconnections between two primary rings result in secondary vortex loops of both smaller and larger radii. Discrete steps in the distribution of flight times, due to the limits on the earliest possible arrival times of secondary loops created after either one or two consecutive reconnections, are observed. The density of primary rings was found to be capped at the value 500 cm-2R-1 independent of the injected density. This is due to collisions between rings causing the piling up of many other vortex rings. Both observations are in quantitative agreement with our theory.
We show that turbulence in superfluid 4 He at low temperatures can be generated and probed by injected ions trapped on vortex cores. The results of our recent experiments, in which negative ions were injected during short and long periods, in different quantities, and into different applied electric fields, are outlined. Three very different mechanisms of vortex-assisted transport of trapped ions were observed: one is on isolated vortex rings while two others are associated with tangles of vortex lines. It seems there are two different types of vortex tangles that can be characterized by the velocity of ion motion through them: a drifting polarized tangle in a low-dissipation state that mainly advects trapped ions, and a more isotropic tangle in a highly-dissipative state, sustained by a continuous forcing by the ion current in an applied electric field, through which trapped ions move rapidly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.