Abstract. The Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is an international collaborative effort to understand and quantify the uncertainties in atmospheric river (AR) science based on detection algorithm alone. Currently, there are many AR identification and tracking algorithms in the literature with a wide range of techniques and conclusions. ARTMIP strives to provide the community with information on different methodologies and provide guidance on the most appropriate algorithm for a given science question or region of interest. All ARTMIP participants will implement their detection algorithms on a specified common dataset for a defined period of time. The project is divided into two phases: Tier 1 will utilize the Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA-2) reanalysis from January 1980 to June 2017 and will be used as a baseline for all subsequent comparisons. Participation in Tier 1 is required. Tier 2 will be optional and include sensitivity studies designed around specific science questions, such as reanalysis uncertainty and climate change. High-resolution reanalysis and/or model output will be used wherever possible. Proposed metrics include AR frequency, duration, intensity, and precipitation attributable to ARs. Here, we present the ARTMIP experimental design, timeline, project requirements, and a brief description of the variety of methodologies in the current literature. We also present results from our 1-month “proof-of-concept” trial run designed to illustrate the utility and feasibility of the ARTMIP project.
A multimodel, multiresolution set of simulations over the period 1950–2014 using a common forcing protocol from CMIP6 HighResMIP have been completed by six modeling groups. Analysis of tropical cyclone performance using two different tracking algorithms suggests that enhanced resolution toward 25 km typically leads to more frequent and stronger tropical cyclones, together with improvements in spatial distribution and storm structure. Both of these factors reduce typical GCM biases seen at lower resolution. Using single ensemble members of each model, there is little evidence of systematic improvement in interannual variability in either storm frequency or accumulated cyclone energy as compared with observations when resolution is increased. Changes in the relationships between large-scale drivers of climate variability and tropical cyclone variability in the Atlantic Ocean are also not robust to model resolution. However, using a larger ensemble of simulations (of up to 14 members) with one model at different resolutions does show evidence of increased skill at higher resolution. The ensemble mean correlation of Atlantic interannual tropical cyclone variability increases from ~0.5 to ~0.65 when resolution increases from 250 to 100 km. In the northwestern Pacific Ocean the skill keeps increasing with 50-km resolution to 0.7. These calculations also suggest that more than six members are required to adequately distinguish the impact of resolution within the forced signal from the weather noise.
This study provides an overview of the coupled high‐resolution Version 1 of the Energy Exascale Earth System Model (E3SMv1) and documents the characteristics of a 50‐year‐long high‐resolution control simulation with time‐invariant 1950 forcings following the HighResMIP protocol. In terms of global root‐mean‐squared error metrics, this high‐resolution simulation is generally superior to results from the low‐resolution configuration of E3SMv1 (due to resolution, tuning changes, and possibly initialization procedure) and compares favorably to models in the CMIP5 ensemble. Ocean and sea ice simulation is particularly improved, due to better resolution of bathymetry, the ability to capture more variability and extremes in winds and currents, and the ability to resolve mesoscale ocean eddies. The largest improvement in this regard is an ice‐free Labrador Sea, which is a major problem at low resolution. Interestingly, several features found to improve with resolution in previous studies are insensitive to resolution or even degrade in E3SMv1. Most notable in this regard are warm bias and associated stratocumulus deficiency in eastern subtropical oceans and lack of improvement in El Niño. Another major finding of this study is that resolution increase had negligible impact on climate sensitivity (measured by net feedback determined through uniform +4K prescribed sea surface temperature increase) and aerosol sensitivity. Cloud response to resolution increase consisted of very minor decrease at all levels. Large‐scale patterns of precipitation bias were also relatively unaffected by grid spacing.
Atmospheric rivers (ARs) are now widely known for their association with high‐impact weather events and long‐term water supply in many regions. Researchers within the scientific community have developed numerous methods to identify and track of ARs—a necessary step for analyses on gridded data sets, and objective attribution of impacts to ARs. These different methods have been developed to answer specific research questions and hence use different criteria (e.g., geometry, threshold values of key variables, and time dependence). Furthermore, these methods are often employed using different reanalysis data sets, time periods, and regions of interest. The goal of the Atmospheric River Tracking Method Intercomparison Project (ARTMIP) is to understand and quantify uncertainties in AR science that arise due to differences in these methods. This paper presents results for key AR‐related metrics based on 20+ different AR identification and tracking methods applied to Modern‐Era Retrospective Analysis for Research and Applications Version 2 reanalysis data from January 1980 through June 2017. We show that AR frequency, duration, and seasonality exhibit a wide range of results, while the meridional distribution of these metrics along selected coastal (but not interior) transects are quite similar across methods. Furthermore, methods are grouped into criteria‐based clusters, within which the range of results is reduced. AR case studies and an evaluation of individual method deviation from an all‐method mean highlight advantages/disadvantages of certain approaches. For example, methods with less (more) restrictive criteria identify more (less) ARs and AR‐related impacts. Finally, this paper concludes with a discussion and recommendations for those conducting AR‐related research to consider.
Future changes in tropical cyclone properties are an important component of climate change impacts and risk for many tropical and midlatitude countries. In this study we assess the performance of a multimodel ensemble of climate models, at resolutions ranging from 250 to 25 km. We use a common experimental design including both atmosphere‐only and coupled simulations run over the period 1950–2050, with two tracking algorithms applied uniformly across the models. There are overall improvements in tropical cyclone frequency, spatial distribution, and intensity in models at 25 km resolution, with several of them able to represent very intense storms. Projected tropical cyclone activity by 2050 generally declines in the South Indian Ocean, while changes in other ocean basins are more uncertain and sensitive to both tracking algorithm and imposed forcings. Coupled models with smaller biases suggest a slight increase in average TC 10 m wind speeds by 2050.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.