Complexes of protein-A with 5 and 16 nm colloidal gold particles (PA/Au' and PA/ Au") are presented as sensitive and clean immunoprobes for ultrathin frozen sections of slightly fixed tissue . The probes are suitable for indirect labeling and offer the opportunity to mark multiple sites. The best procedure for double labeling was to use the smaller probe first, i .e ., antibody 1 -PA/Au' -antibody 2 -PA/Au' s. When this was done, no significant interference between PA/Au' and PA/Au 16 occurred . Using this double-labeling procedure we made an accurate comparison between the subcellular distributions of amylase as a typical secretory protein and of GP-2 a glycoprotein, characteristic for zymogen granule membrane (ZGM) preparations .We prepared two rabbit antibodies against GP-2 . One antibody (R x ZGM) was obtained by immunizing with native membrane material . The specificity of R x ZGM was achieved by adsorption with the zymogen granule content subfraction. The other, R x GP-2, was raised against the GP-2 band of the SDS polyacrylamide profile of ZGM. We found that the carbohydrate moiety of GP-2 was involved in the antigenic determinant for R x ZGM, while R x GP-2 was most likely directed against GP-2 polypeptide backbone .The immunocytochemical observations showed that GP-2, on the one hand, exhibited the characteristics of a membrane protein by its occurrence in the cell membrane, the Golgi membranes, and its association with the membranes of the zymogen granules . On the other hand, GP-2 was present in the contents of the zymogen granules and in the acinar and ductal lumina . Also, a GP-2-like glycoprotein was found in the cannulated pancreatic secretion (Scheffer et al ., 1980, Eur. J. Cell Biol. 23 :122-128) . Hence, GP-2 should be considered as a membrane-associated secretory protein of the rat pancreas .Ultrathin frozen sections of mildly fixed cells and tissues are very suitable for localizing intracellular antigens by means of immunoferritin cytochemistry (12,27,38). The major advantages of the technique are (a) the use of a particulate label, ensuring an accurate positioning of binding sites with high resolution, (b) a good accessibility of membrane-enclosed antigens. Recent developments (37) also allow excellent delineation of ultrastructural detail.As ferritin was the only suitable electron-dense label for frozen sections until now, a limitation was that only one antigen per section could be studied. Recently, however, iron-dextran particles have been introduced .
Nuclear extracts from adenovirus type 5 (Ad5) infected HeLa cells were used to study the template requirements for adenovirus DNA replication in vitro. When XbaI digested Ad5 DNA, containing the parental terminal protein (TP), was used as a template preferential synthesis of the terminal fragments was observed. The newly synthesized DNA was covalently bound to the 82 kD preterminal protein (pTP). Plasmid DNAs containing the Ad2 origin sequence or the Ad12 origin sequence with small deletions were analyzed for their capacity to support pTP-primed DNA replication. Circular plasmid DNAs were inactive. When plasmids were linearized to expose the adenovirus origin, both Ad2 and Ad12 TP-free fragments could support initiation and elongation similarly as Ad5 DNA-TP, although with lower efficiency. These observations indicate that the parental terminal protein is dispensable for initiation in vitro. The presence of 29 nucleotides ahead of the molecular end or a deletion of 14 base pairs extending into the conserved sequence (9-22) destroyed the template activity. DNA with a large deletion within the first 8 base pairs could still support replication while a small deletion could not. The results suggest that only G residues at a distance of 4-8 nucleotides from the start of the conserved sequence can be used as template during initiation of DNA replication.
The development of more effective, accessible, and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector, and whole inactivated virus vaccines is essential to curtailing the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six-proline-stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to outer membrane vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells, and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum-neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination, hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs 7 days after challenge in OMV-mC-Spike-vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.
The development of more effective, accessible and easy to administer COVID-19 vaccines next to the currently marketed mRNA, viral vector and whole inactivated vaccines, is essential to curtain the SARS-CoV-2 pandemic. A major concern is reduced vaccine-induced immune protection to emerging variants, and therefore booster vaccinations to broaden and strengthen the immune response might be required. Currently, all registered COVID-19 vaccines and the majority of COVID-19 vaccines in development are intramuscularly administered, targeting the induction of systemic immunity. Intranasal vaccines have the capacity to induce local mucosal immunity as well, thereby targeting the primary route of viral entry of SARS-CoV-2 with the potential of blocking transmission. Furthermore, intranasal vaccines offer greater practicality in terms of cost and ease of administration. Currently, only eight out of 112 vaccines in clinical development are administered intranasally. We developed an intranasal COVID-19 subunit vaccine, based on a recombinant, six proline stabilized, D614G spike protein (mC-Spike) of SARS-CoV-2 linked via the LPS-binding peptide sequence mCramp (mC) to Outer Membrane Vesicles (OMVs) from Neisseria meningitidis. The spike protein was produced in CHO cells and after linking to the OMVs, the OMV-mC-Spike vaccine was administered to mice and Syrian hamsters via intranasal or intramuscular prime-boost vaccinations. In all animals that received OMV-mC-Spike, serum neutralizing antibodies were induced upon vaccination. Importantly, high levels of spike-binding immunoglobulin G (IgG) and A (IgA) antibodies in the nose and lungs were only detected in intranasally vaccinated animals, whereas intramuscular vaccination only induced an IgG response in the serum. Two weeks after their second vaccination hamsters challenged with SARS-CoV-2 were protected from weight loss and viral replication in the lungs compared to the control groups vaccinated with OMV or spike alone. Histopathology showed no lesions in lungs seven days after challenge in OMV-mC-Spike vaccinated hamsters, whereas the control groups did show pathological lesions in the lung. The OMV-mC-Spike candidate vaccine data are very promising and support further development of this novel non-replicating, needle-free, subunit vaccine concept for clinical testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.