Fusion cross sections were measured for the exotic proton-halo nucleus ⁸B incident on a ⁵⁸Ni target at several energies near the Coulomb barrier. This is the first experiment to report on the fusion of a proton-halo nucleus. The resulting excitation function shows a striking enhancement with respect to expectations for normal projectiles. Evidence is presented that the sum of the fusion and breakup yields saturates the total reaction cross section.
Carbon and oxygen burning reactions, in particular, 12 C þ 12 C fusion, are important for the understanding and interpretation of the late phases of stellar evolution as well as the ignition and nucleosynthesis in cataclysmic binary systems such as type Ia supernovae and x-ray superbursts. A new measurement of this reaction has been performed at the University of Notre Dame using particle-γ coincidence techniques with SAND (a silicon detector array) at the high-intensity 5U Pelletron accelerator. New results for 12 C þ 12 C fusion at low energies relevant to nuclear astrophysics are reported. They show strong disagreement with a recent measurement using the indirect Trojan Horse method. The impact on the carbon burning process under astrophysical scenarios will be discussed.
Neutrinos are so far the most elusive known particles, and in the last decades many sophisticated experiments have been set up in order to clarify several questions about their intrinsic nature, in particular their masses, mass hierarchy, intrinsic nature of Majorana or Dirac particles. Evidence of the Neutrinoless Double-Beta Decay (NDBD) would prove that neutrinos are Majorana particles, thus improving the understanding of the universe itself. Besides the search for several large underground experiments for the direct experimental detection of NDBD, the NUMEN experiment proposes the investigation of a nuclear mechanism strongly linked to this decay: the Double Charge Exchange reactions (DCE). As such reactions share with the NDBD the same initial and final nuclear states, they could shed light on the determination of the Nuclear Matrix Elements (NMEs), which play a relevant role in the decay. The physics of DCE is described elsewhere in this issue, while the focus of this paper will be on the challenging experimental apparatus currently under construction in order to fulfil the requirements of the NUMEN experiment. The overall structure of the technological improvement to the cyclotron, along with the newly developed detection systems required for tracking and identifying the reaction products and their final excitation level are described.
Previously reported data for fusion of the 8 B + ( 58 Ni, 28 Si) systems are critically reviewed. New α particle data from the fusion of 8 B + 58 Ni also are reported, but the paper is mostly based on using realistic calculations of well established codes to reanalyze the previous data. The influence of breakup protons on the evaporation proton measurements for the heavier system is found to be small at all energies except for the lowest one measured, and corrections are made for this process. Possible model dependencies in the deduced fusion cross sections are investigated using three different evaporation codes. The data sets for the 58 Ni and 28 Si targets are shown to be consistent with each other and with fusion enhancement up to energies that are greater than the Coulomb barrier V b (E c.m. < ∼ V b + 1.5×hω). This limit corresponds to 6.2 MeV above the barrier for the 58 Ni target. An important difference with the behaviour of neutron-halo systems is thus confirmed.PACS numbers: 25.60. Pj ,
The 40Ca(18O,18F)40K single charge exchange (SCE) reaction is explored at an incident energy of 275 MeV and analyzed consistently by collecting the elastic scattering and inelastic scattering data under the same experimental conditions. Full quantum-mechanical SCE calculations of the direct mechanism are performed by including microscopic nuclear structure inputs and adopting either a bare optical potential or a coupled channel equivalent polarization potential (CCEP) constrained by the elastic and inelastic data. The direct SCE mechanism describes the magnitude and shape of the angular distributions rather well, thus suggesting the suppression of sequential multi-nucleon transfer processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.