Excessive dead time in complementary switches causes significant energy losses in DC-DC power conversion. The optimization of dead time prevents the degradation of overall efficiency by minimizing the body diode conduction of power switches and, as a consequence, also reduces reverse recovery losses. The present work aims at analyzing the influence of one of the most important characteristics of a digital controller, the timer resolution, in the context of dead-time optimization for synchronous buck converters. In specific, the analysis quantifies the efficiency de-pendency on the timer resolution, in a parameter set that comprises duty-cycle and dead-time, and also converter frequency and analog-to-digital converter accuracy. Based on a sensorless optimization strategy, the relationship between all these limiting factors is described, such as the number of bits of timer and analog-to-digital converter. To validate our approach experimental results are provided using a 12-to-1.8V DC-DC converter, controlled by low- and high-resolution pulse-width modulation signals generated with an XMC4200 microcontroller from Infineon Technologies. The measured results are consistent with our analysis, which predicts the power efficiency improvements not only with a fixed dead time approach, but also with the increment of timer resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.