Human cortical dysplastic lesions are frequently associated with severe partial epilepsies. We report an immunocytochemical investigation on cortical tissue from three surgically treated patients, 20, 38, and 14 years old, with intractable epilepsy due to cortical dysplasia. The studies were performed using antibodies recognizing cytoskeletal proteins, calcium-binding proteins, and some subunits of glutamate receptors. The specimens from the three patients displayed common features: (1) focal cytoarchitectural abnormalities with an increased number of giant pyramidal neurons through all cortical layers except layer I; (2) large, round-shaped balloon cells mainly concentrated in the deepest part of the cortex and in the white matter; (3) a decrease of calcium binding protein immunopositive gamma-aminobutyric acid (GABA)ergic neurons; and (4) abnormal baskets of parvalbumin-positive terminals around the excitatory (pyramidal and large, round-shaped) neurons. These data provide evidence that the epileptogenicity in these types of cortical dysplasia is due to an increase in excitatory neurons coupled with a decrease in GABAergic interneurons.
Apoptosis is a form of naturally occurring cell death that plays a fundamental role during development and is characterized by internucleosomal DNA fragmentation. In this study we used specific in situ labeling of DNA breaks (Gavrieli et al. [1992] J. Cell. Biol. 119:493-501) to analyze the distribution of apoptotic cells in rat cerebral cortex and thalamus at different developmental stages from embryonic day 16 to adulthood. Control experiments and electron microscopy confirmed that the reaction product was confined to the nucleus of selected cells. Plotting and counting of labeled nuclei in counterstained paraffin sections showed that apoptosis occurred mainly during the first postnatal week and was absent in embryonic and adult samples. In the cortex, the number of apoptotic cells progressively increased from birth to the first postnatal week, with a peak between postnatal (P) day 5 and P8, and subsequently decreased. At the time of maximal expression of apoptosis, labeled nuclei were present mainly in layer VIb and underlying white matter and at the border between cortical plate and layer I. Only a few apoptotic cells were found scattered in the thalamus, without a particular concentration in selected areas, but with a peak at P5. Differences in the number of apoptotic cells between cortex and thalamus suggest that apoptotic cell death may have a different functional significance in the two brain areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.