We suggest that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism in which the rate of weathering of silicate minerals (followed by deposition of carbonate minerals) depends on surface temperature, and surface temperature, in turn, depends on carbon dioxide partial pressure through the greenhouse effect. Although the quantitative details of this mechanism are speculative, it appears able partially to stabilize earth's surface temperature against the steady increase of solar luminosity believed to have occurred since the origin of the solar sys tern.
[1] The new Horizontal Wind Model (HWM07) provides a statistical representation of the horizontal wind fields of the Earth's atmosphere from the ground to the exosphere (0-500 km). It represents over 50 years of satellite, rocket, and ground-based wind measurements via a compact Fortran 90 subroutine. The computer model is a function of geographic location, altitude, day of the year, solar local time, and geomagnetic activity. It includes representations of the zonal mean circulation, stationary planetary waves, migrating tides, and the seasonal modulation thereof. HWM07 is composed of two components, a quiet time component for the background state described in this paper and a geomagnetic storm time component (DWM07) described in a companion paper.
Measurements of the auroral atomic oxygen (³P‐¹D) emission line at 6300 Å made by the Atmosphere Explorer visible airglow experiment are analyzed using a tomographic inversion. Emission altitude profiles are compared to the results from an electron transport and chemical reaction model. The model incorporates measurements of the energetic electron flux, neutral composition, ion composition, and electron density. Reasonable correspondence is obtained using primarily the “classical” sources of O(¹D) excitation: electron impact on atomic oxygen and dissociative recombination of O2+. The reaction of N(²D) with O2 is considered to be a minor source. Small contributions are also calculated for cascade from O(¹S), electron impact dissociation of O2, reaction of N+ with O2, and energy transfer from O+(²D) and thermal electrons to O(³P). A possible minor source from the quenching of N(²D) or N(²P) by O(³P) is also discussed.
Observations of the mesosphere and lower thermosphere winds obtained by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) during 1991 to 1995 reveal a semiannual variation in the amplitude of the (1, 1) diurnal tide. The global‐scale wave model (GSWM) represents the first numerical modeling attempt at simulating this seasonal variability, and a preliminary comparison of the GSWM tidal results with HRDI measurements is presented. The results of the comparison and of numerical tests point to some vital and unresolved questions regarding tidal dissipation and tropospheric forcing. In addition to the seasonal variability, HRDI has revealed a strong interannual modulation of the diurnal tide with amplitudes observed to change by nearly a factor of 2 from 1992 to 1994.
The high resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has provided measurements of the horizontal wind field in the stratosphere, mesosphere, and lower thermosphere since November 1991. This data set, which spans a period of more than 3 years, has facilitated an investigation of the long‐term behavior of the background circulation on a nearly global basis. At middle and high latitudes the zonal circulation is characterized by an annual oscillation. At low latitudes (±30°) the most prominent long‐term variation above the stratopause is the mesosphere semiannual oscillation (MSAO), which maximizes near the equator at an altitude of between 80 and 85 km. Further analysis of the time series reveals an additional strong variation, with an amplitude near 30 ms−1 and a period of about 2 years. This feature shows the same altitude and latitude structure as the MSAO and exhibits a phase relationship with the stratospheric quasi‐biennial oscillation (QBO). Observations from the Christmas Island MF radar (2°N, 130°W) confirm the presence of this mesospheric QBO (MQBO). These observations support recent findings from a modeling study which generates an MQBO via the selective filtering of small‐scale gravity waves by the underlying winds they traverse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.