Interferometer (HRDI) zonal mean zonal wind data. We quantify and interpret differences between previous diurnal and semidiurnal predictions, hereafter G SWM-95, and GSWM-98 results. The revised GW stress parameterization accounts for the most profound changes and leads to seasonal variability predictions that are consistent with diurnal amplitudes observed in the upper mesosphere and lower thermosphere. Unresolved differences between HRDI and other wind climatologies significantly affect MLT tidal predictions.
Observations of the mesosphere and lower thermosphere winds obtained by the High Resolution Doppler Imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) during 1991 to 1995 reveal a semiannual variation in the amplitude of the (1, 1) diurnal tide. The global‐scale wave model (GSWM) represents the first numerical modeling attempt at simulating this seasonal variability, and a preliminary comparison of the GSWM tidal results with HRDI measurements is presented. The results of the comparison and of numerical tests point to some vital and unresolved questions regarding tidal dissipation and tropospheric forcing. In addition to the seasonal variability, HRDI has revealed a strong interannual modulation of the diurnal tide with amplitudes observed to change by nearly a factor of 2 from 1992 to 1994.
The high resolution Doppler imager (HRDI) on the Upper Atmosphere Research Satellite (UARS) has provided measurements of the horizontal wind field in the stratosphere, mesosphere, and lower thermosphere since November 1991. This data set, which spans a period of more than 3 years, has facilitated an investigation of the long‐term behavior of the background circulation on a nearly global basis. At middle and high latitudes the zonal circulation is characterized by an annual oscillation. At low latitudes (±30°) the most prominent long‐term variation above the stratopause is the mesosphere semiannual oscillation (MSAO), which maximizes near the equator at an altitude of between 80 and 85 km. Further analysis of the time series reveals an additional strong variation, with an amplitude near 30 ms−1 and a period of about 2 years. This feature shows the same altitude and latitude structure as the MSAO and exhibits a phase relationship with the stratospheric quasi‐biennial oscillation (QBO). Observations from the Christmas Island MF radar (2°N, 130°W) confirm the presence of this mesospheric QBO (MQBO). These observations support recent findings from a modeling study which generates an MQBO via the selective filtering of small‐scale gravity waves by the underlying winds they traverse.
A strong westward traveling oscillation, with a period of 2 days and zonal wave number 3, is observed in the mesospheric and lower thermospheric winds from the High Resolution Doppler Imager on the Upper Atmosphere Research Satellite. The important events happen in January, July, and September/October, of which the occurrence in January is the strongest with an amplitude over 60ms−1. Detailed analyses for the periods of January 1992 and January 1993 reveal a cause‐and‐effect relationship in the wave developing process at 95km. The global structures of the wave amplitude and phase are also presented.
Abstract. Despite a large number of observations of mesospheric nightglow emissions in the past, the quantitative comparison between theoretical and experimental brightnesses is rather poor, owing primarily to the short duration of the observations, the strong variability of the tides, and the influence of short-timescale gravity waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.