Sodium salt sensitivity of common oak (Quercus robur L.) was evaluated in hydroponic culture using INRA-Morizet solution. Addition of NaCl to the nutrient solution reduced only length and weight of roots and first flush stems. In contrast, the second flush was properly expanded even in the presence of 40 mM of NaCl in culture medium. Both leaf number and leaf area were not affected by increasing salt concentration in medium culture while this increase induced significant leaf damage especially in first flush leaves. Stem starch storage was reduced only at 40 mM NaCl treatment. Common oak seedlings seemed to be able to better compartmentalize sodium than chloride when the NaCl concentration increased in the medium culture. Chloride presented a lower uptake than sodium. Sodium was preferentially accumulated in roots and this accumulation occurred at the expense of potassium uptake. The decrease of ATP content in leaves of common oak seedlings submitted to NaCl treatments could indicate that it was used for sodium exclusion out of the leaves, especially in second flush leaves. Relationships between growth responses, starch and mineral element distribution in common oak seedlings will be discussed.& k w d : Key words Quercus robur · Growth · Sodium salt stress · Ion partitioning · Starch strorage& b d y :
The high sucrose phosphate synthase (SPS) capacity and the low soluble acid invertase activity of mature leaves of the first flush of leaves remained stable during second flush development. Conversely, fluctuations of sucrose synthase (SS) activity were in parallel with the sucrose requirement of the second flush. Sucrose synthase activity (synthesis direction) in first flush leaves could increase in ‘response’ to sink demand constituted by the second flush growth. Only the ptotosynthates provided by flush mature leaves were translocated for a current flush, while the starch content of these leaves remained stable. After their emergence, second flush leaves showed an increase in SPS and SS (Synthetic direction) activities. The high sucrose synthesis in second flush leaves was used for leaf expansion. When young leaves were 30% fully expanded (stage II20), SPS activity showed little change whereas SS activity declined rapidly toward and after full leaf expansion. The starch accumulation in the young leaves occured simultaneously with their expansion. Developing leaves showed a high level of acid invertase activity until maximum leaf expansion (stage II1). In first and second flush leaves, changes in acid invertase activity correlated positively with changes in reducing sugar concentrations. Alkaline invertase and sucrose synthase (cleavage direction) activities showed similar changes with low values when compared with those of acid invertase activity, especially in second flush leaves. The present results suggest that soluble acid invertase was the primary enzyme responsible for sucrose catabolism in the expanding common oak leaf.
Within each internode and about four plastochrons after its formation, an intercalary growth area appears, leading to a continued lengthening due essentially to anticline mitoses. It temporarily looks like a cambium. The blade of the leaf which is directly above the internode is absolutely necessary for the formation of this growth area. Xylem integrity of the cauline vascular bundle connected with this leaf is also required. Within each leaf, the presence of the blade and the integrity of vascular bundles are also indispensable for the lengthening of the petiole, whose mitotic system resembles the internode's. The hypothesis of a blade influence on the mitotic lengthening system through mechanical pressure due to the vascular development is discussed. Key words: internode, petiole, blade, vascular tissues, Manihot esculenta, intercalary growth.
One flush lasted for 3 weeks: the first 2 weeks were the growing period and the last was the rest period. It was a false rest period because the activity of the apical meristem did not stop. A flush was characterized by the succession of scales and leaves, and by a succession of long and short internodes. The rhythmical growth is inhibited when 10 mm leaves are removed. Then continuous growth takes place. The apical meristem keeps producing a primortium. If a primortium is not removed it always gives a leaf and never a scale. The removal of the leaves of a flush at their adult size produces a strong reduction in the length of the next flush. During a flush, the intracellular concentration of the 14 C-DMO (5 dimethyl oxazolidine 2-4 dione), a weak and lipophylacid, in the terminal bud and in its adjacent axial tissues, and in leaves, varies in an untouched plant. The same variations are repeated for every flush. The results with a supply of 14 CO 2 confirm the results with the 14 C-DMO.In the case of plants with continuous growth caused by the regular removal of young leaves, the intracellular concentration of 14 C-DMO always remains higher in the terminal bud than in the internodes. There is no change in plants where only the adult leaves of a flush are removed.Our results allow us to put forward a nutritional hypothesis of the rhythmical growth of Quercus robur L. The rhythmical growth is the result of the relationships between 3 elements which are: the apical meristem, the axial tissues bearing the terminal bud, and the very young leaves. If one element, the axial tissues or the young leaves becomes stronger than the others, the growth is changed. Then it is possible that the internodes become short and the primordium produces scales.leaf removal / 14 C-DMO / 14 CO 2 / rhythmlcal growth / Quercus robur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.