Summary— Ecotoxicological investigations were performed on two sets of biological models. The first one concerns marine pollution and was composed of invertebrates (molluscs and crustaceans) contaminated by stable or radioactive elements originating from wastes discharged into sea water. The second one concerns freshwater pollution and was composed of vertebrates (fish) contaminated by aluminium which was dissolved in rivers, as a consequence of an atmospheric pollution by acid rain. Mechanisms involved in the uptake, storage and elimination processes of these toxicants were studied, with a special emphasis on cellular and subcellular aspects of concentration sites. Two microanalytical methods were employed: secondary ion mass spectrometry (SIMS), using the ion microscope and the ion microprobe, and X‐ray spectrometry using the electron microprobe (EMP). SIMS, which enables the visualization of trace elements, was associated with an image processing system using a highly sensitive television camera connected to an image computer. Polychromatic images were obtained, allowing to establish the cellular distribution of metal contaminants. In marine organisms, the target organs and tissues of Al, rare earth elements (Tm and La) and radionuclides (U, Pu, Am) were shown to be mainly digestive gland and exoskeleton. The target organelles were shown to be spherocrystals and lysosomes where the enzymatic lysosomal coprecipitation with phosphorus was observed. Amoebocytes, which are enzymatically equipped with lysosomal phosphatase, were involved in the phagocytic clearance of metal pollutants. In trout, two processes appeared to be involved in Al accumulation. The first one corresponds to the well known insolubilisation of Al phosphate, within lysosomes of organs devoted to uptake and excretion such as gill and kidney. The second one demonstrates that organs and tissues which cannot eliminate, such as bone, heart and brain, retain Al, exhibiting a high intracellular metal concentration; moreover, large Al deposits inducing nervous tissue destruction have been observed. Data have been discussed in connection with the relationship between man and his environment.
Several drugs, containing a halogen atom, F or Br, that are being used in antiviral or anticancer therapy, were studied for their localization in cultured cells by ion microanalysis. The association allows to reduce the exposure time to define the intracellular localization of the studied element. The topography of the cells is given by the image of the polyatomic ion 26CN-. The image of the distribution of 81Br- or 19F-, coded in another color scale, can be superimposed, giving a polychromic image of the cell, thus showing the intracellular localization of the compound. MCF-7 tumor cells were cultured in the presence of pyrimidine derivatives. 5-Bromo-2'-deoxyuridine (BUdR) and 5-trifluorothymidine (F3TdR) were localized in the nucleus, 5-fluoro-2'-deoxyuridine (FUdR) in the nucleus and only in some nucleoli. The method is simple and rapid, as compared with techniques using radiolabeled compounds, or with immunocytochemical techniques. It is possible to observe two different compounds in the same cell. It could be applied to other compounds containing a halogen atom.
SUMMARY Ion microscopy is a microanalytical method by which one can obtain distribution images of any chemical element with isotope discrimination even at very low local concentrations, in successive slices of the specimen. These images are obtained at the price of progressive erosion of the specimen, so that the analysis may not be replayed and it is necessary to record the maximum amount of information during specimen erosion. We present an improvement of this method using a highly sensitive camera connected to a video analog‐digital converter. The images are acquired and digitized on line and may be processed by an image computer. We illustrate the technique described with an application of ion microscopy that is made possible by digital recording and processing of images. This application concerns the precise comparison of iodine isotopes and phosphorus distributions in sections of the thyroid gland of rats which were submitted to an iodine‐deficient diet followed by an injection of 129 I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.