The estimation of fecundity and reproductive cells (oocytes) development dynamic is essential for an accurate study of biology and population dynamics of fish species. This estimation can be developed using the stereometric method to analyse histological images of fish ovary. However, this method still requires specialized technicians and much time and effort to make routinary fecundity studies commonly used in fish stock assessment, because the available software does not allow an automatic analysis. The automatic fecundity estimation requires both the classification of cells depending on their stage of development and the measurement of their diameters, based on those cells that are cut through the nucleous within the histological slide. Human experts seem to use colour and texture properties of the image to classify cells, i.e. colour texture analysis from the computer vision point of view. In the current work, we provide an exhaustive statistical evaluation of a very wide variety of parallel and integrative texture analysis strategies, giving a total of 126 different feature vectors. Besides, a selection of 17 classifiers, representative of the currently available classification techniques, was used to classify the cells according to the presence/absence 1 of nucleous and their stage of development. The Support Vector Machine (SVM) achieves the best results for nucleous (99.0% of accuracy using colour Local Binary Patterns (LPB) feature vector, integrative strategy) and for stages of development (99.6% using First Order Statistics and grey level LPB, parallel strategy) with the species Merluccius merluccius, and similar accuracies for Trisopterus luscus. These results provide a high reliability for an automatic fecundity estimation from histological images of fish ovary.
12To estimate productivity of a fish stock, the precise determination of fish 13 fecundity is essential. The stereological method accurately estimates fecun-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.